MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2 Mark Scheme: Teachers' version
Syllabus
9702
Paper
GCE AS/A LEVEL - October/November 2010
1 (a) (i) No help from Supervisor.
(ii) Values of a and b with consistent units to the nearest mm .
(b) Six sets of readings of a, b and R scores 5 marks, five sets scores 4 marks etc.

Incorrect trend then -1. Correct trend b/a increases, R increases.
Major help from supervisor -1.
Range: used $R=8000 \Omega$ or 7000Ω.
Column headings ($R / \Omega, a / m, b / m, b / a$).
Must have R and either b/a or a and b columns.
Each column heading must contain a quantity and a unit where appropriate.
Ignore any units in the body of the table.
There must be some distinguishing mark between the quantity and the unit (solidus is expected but accept, for example, $R(\Omega)$.

Consistency of presentation of readings.
All values of raw a and b must be given to the nearest mm.
Significant figures.
Significant figures for b/a must be the same as, or one more than, the least number of s.f. used in a or b.

Correct calculation of b/a.
(c) (i) Axes:

Sensible scales must be used. No awkward scales (e.g. 3:10).
Scales must be chosen so that the plotted points occupy at least half the graph grid in both x and y directions.
Scales must be labelled with the quantity which is being plotted. Ignore units.
Scale markings should be no more than three large squares apart.
All observations must be plotted. Ignore any plot off the grid.
Write a ringed total of plotted points.
Ring and check a suspect point.
Work to an accuracy of half a small square.
Do not accept blobs (points with diameter > 0.5 small square).
(ii) Line of best fit.

Judge by balance of at least 5 trend points about candidate's line.
There must be an even distribution of points either side of the line along the full length.
Line must not be kinked. Do not allow lines thicker than half a small square.
Quality.
Scatter of points must be less than $\pm 200 \Omega$ in the R - axis about a straight line. All points in the table must be plotted (at least 5) for this mark to be awarded.
(iii) Gradient.

The hypotenuse of the triangle must be at least half the length of the drawn line. Both read-offs must be accurate to half a small square.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	31

(d) Gradient $=\frac{1}{X}$

Value of X in range 3000-3600 Ω with unit.
(e) $\frac{b}{a}=1$

Correct reading off graph.
[Total: 20]

2 (c) (ii) Measurement of h to nearest mm with consistent unit. $0.900 \mathrm{~m}<\mathrm{h}<1.100 \mathrm{~m}$
(d) (ii) Value of $m_{\mathrm{A}}-m_{\mathrm{B}}=20 \mathrm{~g}$ with consistent unit.
(iii) Value of t with unit. $t<5$ seconds

Evidence of repeated measurements of t.
(e) Absolute uncertainty in t in range $0.1-0.6 \mathrm{~s}$.

If repeated readings have been taken, then the uncertainty can be half the range.
Correct method of calculation to get percentage uncertainty.
(f) Second value of $m_{A}-m_{B}=40 \mathrm{~g}$

Second value of t.
Quality: second value of $t<$ first value of t.
(g) (i) Values of k calculated correctly.
(ii) Justification of sf in k linked t and $\left(m_{A}-m_{\mathrm{B}}\right)$ or m_{A} and m_{B} or masses.
(iii) Valid conclusion based on the calculated values of k.

Candidate must test against a stated criterion.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	31

(h) Identifying limitations marks and suggesting improvements

(i)	Limitations [4]	(ii)	Improvements [4]	Do not credit
A_{p}	Two readings are not enough (to draw a conclusion)	$\mathrm{A}_{\text {s }}$	Take more readings and plot a graph/calculate more values of k.	One reading/few readings/take more readings and average.
B_{p}	Masses hit each other/ masses slipping off.	$\mathrm{B}_{\text {s }}$	Use larger pulley/method of securing masses to hanger.	
C_{p}	Uncertain starting position	Cs	Method of fixing rule e.g. clamp rule/electromagnetic release mechanism	
D_{p}	Difficult to measure time as time short/reaction time large compared with time.	$\mathrm{D}_{\text {s }}$	Drop through greater height/ expand on trap door mechanism/ light gate with timer/motion sensor with data logger/video timer with timer.	
E_{p}	Friction at pulley		Lubricate pulley	Friction between pulley and string
F_{p}	Retort stand moves	$\mathrm{F}_{\text {s }}$	Method of fixing to the bench e.g. clamp/add weights	
G_{p}	Mass (values) not accurate	$\mathrm{G}_{\text {s }}$	Use balance/method of measuring mass	

Do not credit parallax error.

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	33

1 (a) (ii) Value of raw h to the nearest mm (unit needed). $h>20 \mathrm{~cm}$.
(b) Evidence of repeat times: of one swing repeated several times or the time for a number of swings recorded at least once (not fixed time and count n).
Value of $0.5<T<3 \mathrm{~s}$.
(c) Six sets of readings of x and T scores 5 marks, five sets scores 4 marks etc.

Incorrect or no trend then -1 (Correct trend x increases, T^{2} decreases). SH -1.
Write a ringed total next to the table.
Maximum value of x at least $h / 2$.
Column headings $\left(x / \mathrm{m}, x / \mathrm{mm}, T / \mathrm{s}, T^{2} / \mathrm{s}^{2}\right)$.
Must have x and T^{2} columns.
Each column heading must contain a quantity and a unit.
Ignore any units in the body of the table.
There must be some distinguishing mark between the quantity and the unit (solidus is expected but accept, for example, $x(m)$).

Consistency of presentation of raw readings.
All values of raw x must be given to the nearest mm and all values of raw time to the same number of d.p. (either 1 or 2).

Significant figures.
Significant figures for T^{2} must be the same as, or one more than, the least number of significant figures used in the raw time data. Also if raw time is given to the nearest hundredth of a second accept one less significant figure in T^{2}.

Correct calculation of T^{2}. Do not allow t^{2}.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	33

(d) (i) Axes:

Sensible scales must be used. No awkward scales (e.g. 3:10).
Scales must be chosen so that the plotted points occupy at least half the graph grid in both x and y directions.
Scales must be labelled with the quantity which is being plotted. Ignore units.
Scale markings should be no more than three large squares apart.
All observations must be plotted on the grid.
Write a ringed total of plotted points.
Ring and check a suspect plot.
Work to an accuracy of half a small square.
Do not accept blobs (points with diameter >0.5 small square).
(ii) Line of best fit.

Judge by balance of at least 5 points about the candidate's line.
There must be an even distribution of points either side of the line along the full length.
Line must not be kinked. Do not allow lines thicker than half a small square.
Quality.
Scatter of points must be less than $\pm 1 \mathrm{~cm}$ (to scale) in the $x(\mathrm{~cm})$ direction of a straight line. All points in table must be plotted (at least 5) for this mark to be awarded.
(iii) Gradient.

Negative sign must be seen on answer line consistent with graph.
The hypotenuse of the triangle must be at least half the length of the drawn line. Both read-offs must be accurate to half a small square.

Intercept.
Either:
Check correct read-off from a point on the line and substitution into $y=m x+c$.
Read off must be accurate to half a small square. Allow ecf of gradient value.
Or:
Check read-off of intercept directly from the graph.
(e) Value of $\frac{A}{B} \frac{y \text { intercept }}{\mid \text { gradient } \mid}$ (Expect value to be approximately equal to h).

Unit for A / B correct (e.g. m) consistent with value.
Allow candidate's value $0.5 h<A / B<1.5 h$.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	33

2 Measurement of d_{A} in range $0.20 \mathrm{~mm}<d_{\mathrm{A}}<0.40 \mathrm{~mm}$ to nearest 0.01 mm or 0.001 mm with consistent unit. If OOR allow $\mathrm{SV} \pm 0.10 \mathrm{~mm}$.

Evidence of repeated measurements of d (or in (e)).
(c) (i) Measurement of L to nearest mm with consistent unit.
(ii) Absolute uncertainty in L is $2 \mathrm{~mm}-10 \mathrm{~mm}$.

If repeated readings have been taken, then the uncertainty can be half the range. Correct method of calculation to get percentage uncertainty.
(d) (ii) Measurement of V_{A}. Any supervisor's help -1.
(e) Value of d_{B}. Major help from supervisor -1 .
(f) (ii) Measurement of V_{B} to at least nearest 0.1 V with unit. $V<2 \mathrm{~V}$. If $>2 \mathrm{~V}$ check SV .

Quality: $V_{\mathrm{B}}<V_{\mathrm{A}}$.
(g) (i) Values of k calculated correctly.
(ii) Justification of sf in k linked to L and d and V.
(iii) Valid conclusion based on the calculated values of k.

Candidate must test against a stated criterion.

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	33

(h)

(i)	Limitations [4]		Improvements [4]	Do not credit
A_{p}	Two readings are not enough (to draw a conclusion.		Take more readings and plot a graph/calculate more values of k.	One reading/ few readings/ take more readings and average.
	Difficult to measure length because (give a reason) e.g. clips have a width/ clip slips. Difficult to make L the same (for both experiments).		Use sliding jockeys/narrower clips/ solder contacts/use longer wire (to reduce \% error).	
C_{p}	Voltmeter scale not sensitive enough/not precise enough/only reads to 0.1 or 0.05 V .	C_{s}	Use digital voltmeter/use a voltmeter that reads to 0.01 V .	Voltmeter not accurate enough. More accurate voltmeter.
D_{p}	Wires kinked/Wires not straight/Difficult to keep wire straight/difficult to prevent short circuiting.		Method of keeping wire (during experiment) straight e.g. tape to ruler, hang weights off end, clamp wire.	Parallax error.
E_{p}	Difficult to make I the same (for both experiments).		Method to obtain continuous variation in the current e.g. (slide wire) potentiometer/potential divider/finer wire rheostat/longer rheostat.	
	Contact resistance/ fluctuating ammeter or voltmeter readings.		Method of cleaning contacts e.g. sand clips. Tighten clips.	

Ignore reference to parallax error, zero error on meters, heating effects of wire, cell runs down, video the experiment.

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

1 (c) Measurements for h_{1} and h_{2} to nearest mm
Check raw values if readings are repeated.
The difference between h_{1} and h_{2} is $<2 \mathrm{~mm}$.
(d) (iii) Six sets of readings of n, h_{1} and h_{2} scores 5 marks, five sets scores

4 marks etc.
Incorrect trend then -1.
Help from supervisor then -1 .
Range -
n values must include 10 or greater.
Column headings -
Each column heading must contain a quantity and a unit where appropriate.
There must be some distinguishing mark between the quantity and the unit.
E.g. h_{1} / cm or $h_{1}(\mathrm{~cm})$ but not $1 /\left(\left(h_{1}-h_{1}\right) / \mathrm{cm}\right)$.

Consistency of presentation of raw readings -
All values of h_{1} and h_{2} must be given to the same precision.
Significant figures -
S.f. for $1 /\left(h_{1}-h_{2}\right)$ must be the same as, or one more than, the s.f. in the difference $\left(h_{1}-h_{2}\right)$.

Calculation -
$1 /\left(h_{1}-h_{2}\right)$ calculated correctly.
(Graph) Axes -
Sensible scales must be used, no awkward scales (e.g. 3:10). Scales must be chosen so that the plotted points must occupy at least half the graph grid in both x and y directions.
Scales must be labelled with the quantity which is being plotted. Ignore units.
Scale markings must be no more than 3 large squares apart.
Plotting of points -
All observations must be plotted.
Do not accept blobs (points with diameter > half a small square).
Ring and check a suspect plot. Tick if correct. Re-plot if incorrect.
Work to an accuracy of half a small square.
Line of best fit -
Judge by balance of at least 5 trend points about the candidate's line. There must be an even distribution of points either side of the line along the full length.
Line must not be kinked.
Quality -
Scatter of points must be less than ± 0.02 on the $1 / n$ axis about the examiner's line. All points must be plotted (at least 5) for this mark to be scored.
(e) (iii) Gradient

The hypotenuse must be at least half the length of the drawn line.
Both read-offs must be accurate to half a small square.
Intercept
Check that the read-off or the method of calculation is correct.
(f) Value of $a=$ value of gradient and value of $b=$ value of intercept.

Do not allow a value presented as a fraction.
Units for a and b are correct.
E.g. cm^{1} or $\mathrm{m}{ }^{1}$ but must be consistent with the values.

Allow no unit for b if $b=0$.
[Total: 20]

2 (a) (i) Value of d in range 5 cm to 15 cm .
Help from supervisor then -1 .
Evidence of repeated measurements of d.
(ii) Correct calculation of A.

Do not allow a value in terms of π.
(b) (i) Measurement for x in range $0.8 \mathrm{~cm}<x<1.0 \mathrm{~cm}$ to nearest mm .
(ii) Absolute uncertainty 1 or 2 mm (or half the range of repeats), and correct method of calculation.
(c) (ii) Measurement for h to nearest mm .
(d) (iii) Value for $t>1 \mathrm{~s}$ and given to 0.1 s or 0.01 s .

Check raw data if there are repeats.
(iv) Correct calculation of R, with consistent unit (e.g. $\mathrm{cm}^{3} \mathrm{~s}^{1}$).
(e) (i) Values for x, V and h.
(ii) Correct trend (R increases with h).
(f) (i) Values of k calculated correctly.
(ii) Valid conclusion based on the calculated values of k. Candidate must test against a stated criterion.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	34

(g)

	(i) Problems 4 max	(ii) Improvements 4 max	No credit/not enough
A	Two readings are not enough (to draw a conclusion).	Take more readings, and plot a graph/calculate more k values.	More readings and calculate the average/ only one reading.
B	Bottle not circular/ diameter at P different to that at Q.	Collect water and measure volume/remeasure diameter at P.	
C	Bottle deforms when measuring d.	Use vernier callipers to measure d.	Use string to measure d.
D	Difficult to see water level/meniscus problems/refraction problems.	Use coloured water/liquid.	Use oil.
E	Labels get wet/ink runs	Use waterproof labels/ink	
F	Difficult to judge when to start/stop timing.	Use video, with timing method.	Human reaction time error.
G	Large uncertainty in x.	Use travelling microscope to measure x.	
X	Another valid point E.g. Flowrate calculated is not the flowrate at h.	E.g. Measure h to point midway between marks.	Move marks closer together.

Ignore 'parallax problems' unless there is a convincing diagram.
Ignore 'use assistant'.
Ignore 'use distance sensor' unless there is a convincing diagram.
Ignore 'use a computer/datalogger/light gates'.
Ignore 'bottle not vertical'.

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	35

1 (a) (i) Value of d to the nearest 0.01 mm or 0.001 mm with consistent unit. $0.20<d<0.60 \mathrm{~mm}$.
(b) (iii) Value of x in range $40 \mathrm{~cm}-60 \mathrm{~cm}$ with consistent unit.

Value of I with units.
(c) Six sets of readings of x and I scores 5 marks, five sets scores 4 marks etc. Incorrect trend then -1 . Minor help from supervisor -1 ; major help from supervisor -2

Range
$\mathrm{x}_{\text {max }}>70 \mathrm{~cm} ; \mathrm{x}_{\text {min }}<30 \mathrm{~cm}$
Column headings
Each column heading must contain a quantity and a unit.
There must be some distinguishing mark between the quantity and the unit (solidus is expected but accept, for example, 1/I (A^{1}). Do not allow $1 / I(\mathrm{~A})$)

Consistency of presentation of raw readings.
All values of x must be given to the nearest mm .
Significant figures
S.F. in $1 / I$ must be the same as, or one more than, the least number of significant figures used in raw I.

Calculation
Correct calculation of $1 / I$.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	35

(d) (i) Axes

Sensible scales must be used. Awkward scales (e.g. 3:10) are not allowed.
Scales must be chosen so that the plotted points occupy at least half the graph grid in both x and y directions.
Scales must be labelled with the quantity which is being plotted. Ignore units.
Scale markings should be no more than three large squares apart.
Plotting of points
All observations must be plotted on the grid.
Do not accept blobs (points with diameter > 0.5 small square).
Ring and check a suspect plot.
Work to an accuracy of half a small square.
(ii) Line of best fit

Judge by the balance of at least 5 points about the candidate's line.
There must be an even distribution of points either side of the line along the full length.
Lines must not be kinked. Do not accept lines thicker than half a small square.
Quality
All points in the table (minimum 5) must be plotted for this mark to be scored. All points must be within 2 cm (to scale) in x direction of a straight line.
(iii) Gradient

The hypotenuse of the triangle must be at least half the length of the drawn line. Both read-offs must be accurate to half a small square.

Intercept
Either:
Check correct read-off from a point on the line, and substitution into $y=m x+c$. Read-off must be accurate to half a small square. Allow ecf of gradient value.

Or:
Check read-off of intercept directly from graph.
(e) Values obtained in (a)(ii) and (d)(iii) substituted correctly into equation: $\frac{M}{N} \frac{\rho}{A R}$

Do not allow substitution methods to find M or N
Value for ρ in range: $1 \times 10^{7} \Omega \mathrm{~m}-5 \times 10^{6} \Omega \mathrm{~m}$ with consistent unit.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	35

2 (a) (ii) Measurement of x to nearest mm. $x<15.0 \mathrm{~cm}$ with consistent unit.
-1 for supervisor's help.
(b) (iii) Measurement of θ (less than 90°) with unit.
(iv) Absolute uncertainty in θ in the range $2^{\circ}-10^{\circ}$.

If repeated readings have been taken, then the uncertainty can be half the range. Correct method of calculation of percentage uncertainty.
(v) $m=50 \mathrm{~g}$ with consistent unit
$M=60 \mathrm{~g}$ with consistent unit
(vi) Correct calculation of m / M (0.83 or 0.833). No units.
(c) Measurement of θ
$m=40 \mathrm{~g} ; M=70 \mathrm{~g}$
Quality: $\theta_{2}>\theta_{1}$
(d) (i) Correct calculation of two values of k.
(ii) Justification of sf in k linked to θ, m and M
(iii) Valid conclusion based on the calculated values of k.

Candidate must test against a stated criterion.

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	35

(e) Identifying limitations (4 marks) and suggesting improvements (4 marks)

	(i) Limitations \quad [4]	(ii) Improvements \quad [4]	Do not credit
A	Two readings are not enough (to draw a conclusion.	Take more readings and plot a graph/calculate more k values (and compare).	Few readings. Take more readings and calculate average. Only one reading.
B	Difficult to balance with reason e.g. unstable or effect of fans/draughts/a.c.	Drill hole higher up/switch off fans/a.c./close windows.	Closed room.
C	Difficult to judge when wooden strip horizontal/parallel (to the bench).	Method of ensuring strip is horizontal/parallel to bench e.g. use a spirit level or metre rule(s) to measure height of both ends/sight against window. Allow detailed use of set square.	Strip not straight/parallel/ horizontal.
D	Difficult keeping x constant/ weights move.	Method of fixing cotton loop to rule e.g. tape, glue.	Use.
E	Difficult to measure θ because hard to judge vertical/movement of hand.	Use a plumb line/clamped ruler/clamp protractor.	Bigger protractor. Paper behind protractor.
F	Friction at pulley/between nail and wooden strip.	Use lubricant/method of reducing friction.	Friction. Better pulley/ smooth(er) string/thin(ner) string. Friction between string and pulley. Lubrication between string and pulley.
G	Mass (values) not accurate.	Use balance/method of weighing mass.	Weigh masses.

Do not credit 'parallax problems', 'use assistant' or references to sensors, computers or videos.
[Total: 20]

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	41

Section A

1
(a) force per unit mass
(ratio idea essential)
B1 [1]
(b) graph: correct curvature M1
from $\left(R, 1.0 g_{\mathrm{s}}\right) \&$ at least one other correct point
A1
(c) (i) fields of Earth and Moon are in opposite directions
either resultant field found by subtraction of the field strength or any other sensible comment
so there is a point where it is zero A0 (allow $F_{\mathrm{E}}=-F_{\mathrm{M}}$ for 2 marks)
(ii) $G M_{E} / x^{2}=G M_{M} /(D-x)^{2}$

C1
$\left(6.0 \times 10^{24}\right) /\left(7.4 \times 10^{22}\right)=x^{2} /\left(60 R_{\mathrm{E}}-x\right)^{2}$
C1
$x=54 R_{\mathrm{E}}$
A1
(iii) graph: $g=0$ at least $2 / 3$ distance to Moon

B1
g_{E} and g_{M} in opposite directions
correct curvature (by eye) and $g_{\mathrm{E}}>g_{\mathrm{M}}$ at surface M1 A1

2 (a) (i) no forces (of attraction or repulsion) between atoms / molecules / particles
(ii) sum of kinetic and potential energy of atoms / molecules due to random motion
(iii) (random) kinetic energy increases with temperature no potential energy
(so increase in temperature increases internal energy)
(b) (i) zero
A1
(ii) work done $=p \Delta V$

$$
\begin{aligned}
& =4.0 \times 10^{5} \times 6 \times 10^{4} \\
& =240 \mathrm{~J} \quad \text { (ignore any sign) }
\end{aligned}
$$

(iii)

change	work done / J	heating / J	increase in internal energy / J
$\mathrm{P} \rightarrow \mathrm{Q}$	$\mathbf{+ 2 4 0}$	-600	$\mathbf{- 3 6 0}$
$\mathrm{Q} \rightarrow \mathrm{R}$	0	+720	$\mathbf{+ 7 2 0}$
$\mathrm{R} \rightarrow \mathrm{P}$	$\mathbf{- 8 4 0}$	$\mathbf{+ 4 8 0}$	$\mathbf{- 3 6 0}$

[^0]| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | GCE AS/A LEVEL - October/November 2010 | 9702 | 41 |

3 (a) (i) resonance
(ii) amplitude 16 mm and frequency 4.6 Hz

A1 [1]
(b) (i) $a=(-) \omega^{2} x$ and $\omega=2 \pi f$

C1
$a=4 \pi^{2} \times 4.6^{2} \times 16 \times 10^{3}$
$=13.4 \mathrm{~ms}^{2}$
C1
(ii) $\begin{aligned} F & =m a \\ & =150 \times 10^{3} \times 13.4\end{aligned}$

$$
=2.0 \mathrm{~N}
$$

A1
(c) line always 'below' given line and never zero

M1
peak is at 4.6 Hz (or slightly less) and flatter
A1

4 (a) charge / potential (difference) (ratio must be clear)
(b) (i) $V=Q / 4 \pi \varepsilon_{0} r$
(ii) $C=Q / V=4 \pi \varepsilon_{0} r$ and $\underline{4 \pi \varepsilon_{0}} \underline{\text { is constant }} \quad$ M1
so $C \propto r$
A0
(c) (i) $r=C / 4 \pi \varepsilon_{0} r$

C1
$r=\left(6.8 \times 10^{12}\right) /\left(4 \pi \times 8.85 \times 10^{12}\right)$
C1
$=6.1 \times 10^{2} \mathrm{~m}$
A1
(ii) $Q=C V=6.8 \times 10^{12} \times 220$ $=1.5 \times 10^{9} \mathrm{C}$
(d) (i) $V=Q / C=\left(1.5 \times 10^{9}\right) /\left(18 \times 10^{12}\right)$ $=83 \mathrm{~V}$
(ii) either energy $=1 / 2 \mathrm{CV}^{2}$

C1
$\Delta E=1 / 2 \times 6.8 \times 10^{12} \times 220^{2}-1 / 2 \times 18 \times 10^{12} \times 83^{2}$ C1
$=1.65 \times 10^{7}-6.2 \times 10^{8}$
$=1.03 \times 10^{7} \mathrm{~J}$
A1
or \quad energy $=1 / 2 Q V$
$\Delta E=1 / 2 \times 1.5 \times 10^{9} \times 220-1 / 2 \times 1.5 \times 10^{9} \times 83$

$$
=1.03 \times 10^{7} \mathrm{~J}
$$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	41

5 (a) field into (the plane of) the paper
B1 [1]
(b) force due to magnetic field provides the centripetal force

B1
$m v^{2} / r=B q v$
C1
$B=\left(20 \times 1.66 \times 10^{27} \times 1.40 \times 10^{5}\right) /\left(1.6 \times 10^{19} \times 6.4 \times 10^{2}\right)$ B1 $=0.454 \mathrm{~T}$ AO
[3]
(c) (i) semicircle with diameter greater than 12.8 cm B1
(ii) new flux density $=\frac{22}{20} \times 0.454$ C1

$$
B=0.499 \mathrm{~T}
$$

6 (a) (i) e.g. prevent flux losses / improve flux linkage B1
$\begin{array}{ll}\text { (ii) flux in core is changing } & \mathrm{B} 1\end{array}$
e.m.f. / current (induced) in core B1
induced current in core causes heating B1
$\begin{array}{ll}\text { (b) (i) that value of the direct current producing same (mean) power / heating } \\ \text { in a resistor } & \text { M1 }\end{array}$

$V_{\mathrm{P}} I_{\mathrm{P}}=V_{\mathrm{S}} I_{\mathrm{S}}$

7 (a) (i) e.g. electron / particle diffraction B1
(ii) e.g. photoelectric effect B1
(b) (i) 6
(ii) change in energy $=4.57 \times 10^{19} \mathrm{~J}$
$\lambda=h c / E$
$=\left(6.63 \times 10^{34} \times 3.0 \times 10^{8}\right) /\left(4.57 \times 10^{19}\right)$

C1
$=4.4 \times 10^{7} \mathrm{~m}$

8 (a) splitting of a heavy nucleus (not atom/nuclide) M1 into two (lighter) nuclei of approximately same mass A1
(b) ${ }_{0}^{1} n$
${ }_{2}^{4} \mathrm{He} \quad$ (allow $\left.{ }_{2}^{4} \alpha\right) \quad$ M2
${ }_{3}^{7} \mathrm{Li}$ A1

(c) emitted particles have kinetic energy	B1
range of particles in the control rods is short / particles stopped in rods /	
lose kinetic energy in rods	
kinetic energy of particles converted to thermal energy	B1

Section B

9 (a) (i) non-inverting (amplifier)
(ii) $(G=) 1+R_{2} / R_{1}$
(b) (i) gain $=1+100 / 820$

C1 output $=17 \mathrm{mV}$ A1
(ii) 9 V
(R_{2} / R_{1} scores 0 in (a)(ii) but possible 1 mark in each of (b)(i) and (b)(ii) ($1+R_{1} / R_{2}$) scores 0 in (a)(ii), no mark in (b)(i), possible 1 mark in (b)(ii) ($1-R_{2} / R_{1}$) or R_{1} / R_{2} scores 0 in (a)(ii), (b)(i) and (b)(ii))

10 (a) (i) density \times speed of wave (in the medium)
(ii) $\rho=\left(7.0 \times 10^{6}\right) / 4100$
$=1700 \mathrm{~kg} \mathrm{~m}^{3}$
(b) (i) $I=I_{\mathrm{T}}+I_{\mathrm{R}}$

B1
(ii) 1. $\alpha=\left(0.1 \times 10^{6}\right)^{2} /\left(3.1 \times 10^{6}\right)^{2}$

$$
=0.001
$$

C1
2. $\alpha \approx 1$
(c) either very little transmission at an air-skin boundary M1 (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body M1
or no gel, majority reflection A1
with gel, little reflection
when wave travels in or out of the body

11 (a) (i) unwanted random power / signal / energy
(ii) loss of (signal) power / energy
(b) (i) either signal-to-noise ratio at mic. $=10 \lg \left(P_{2} / P_{1}\right)$
$=10 \lg \left(\left\{2.9 \times 10^{6}\right\} /\left\{3.4 \times 10^{9}\right\}\right)$ $=29 \mathrm{~dB}$
maximum length $=(29-24) / 12$

$$
=0.42 \mathrm{~km}=420 \mathrm{~m}
$$

or signal-to-noise ratio at receiver $=10 \lg \left(P_{2} / P_{1}\right)$
at receiver, $24=10 \lg \left(P /\left\{3.4 \times 10^{9}\right\}\right)$

$$
\begin{equation*}
P=8.54 \times 10^{7} \mathrm{~W} \tag{C1}
\end{equation*}
$$

power loss in cables $=10 \lg \left(\left\{2.9 \times 10^{6}\right\} /\left\{8.54 \times 10^{7}\right\}\right)$

$$
=5.3 \mathrm{~dB}
$$

length $=5.3 / 12 \mathrm{~km}$

$$
=440 \mathrm{~m}
$$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	$\mathbf{9 7 0 2}$	$\mathbf{4 1}$

12 (a) (carrier wave) transmitted from Earth to satellite
satellite receives greatly attenuated signal
signal amplified and transmitted back to Earth
B1
at a different (carrier) frequency
B1
different frequencies prevent swamping of uplink signal
(1)
e.g. of frequencies used ($6 / 4 \mathrm{GHz}, 14 / 11 \mathrm{GHz}, 30 / 20 \mathrm{GHz}$) (two B1 marks plus any two other for additional physics)
(b) advantage: e.g. much shorter time delay M1
because orbits are much lower
A1
e.g. whole Earth may be covered in several orbits / with network
disadvantage: e.g. either must be tracked or limited use in any one orbit M1 more satellites required for continuous operation A1

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/42
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	$\mathbf{9 7 0 2}$	$\mathbf{4 2}$

Section A

1
(a) force per unit mass
(ratio idea essential)
B1 [1]
(b) graph: correct curvature M1
from $\left(R, 1.0 g_{\mathrm{s}}\right) \&$ at least one other correct point
A1
(c) (i) fields of Earth and Moon are in opposite directions
either resultant field found by subtraction of the field strength or any other sensible comment
so there is a point where it is zero A0 (allow $F_{\mathrm{E}}=-F_{\mathrm{M}}$ for 2 marks)
(ii) $G M_{E} / x^{2}=G M_{M} /(D-x)^{2}$

C1
$\left(6.0 \times 10^{24}\right) /\left(7.4 \times 10^{22}\right)=x^{2} /\left(60 R_{\mathrm{E}}-x\right)^{2}$
C1
$x=54 R_{\mathrm{E}}$
A1
(iii) graph: $g=0$ at least $2 / 3$ distance to Moon

B1
g_{E} and g_{M} in opposite directions
correct curvature (by eye) and $g_{\mathrm{E}}>g_{\mathrm{M}}$ at surface M1 A1

2 (a) (i) no forces (of attraction or repulsion) between atoms / molecules / particles
(ii) sum of kinetic and potential energy of atoms / molecules due to random motion
(iii) (random) kinetic energy increases with temperature no potential energy
(so increase in temperature increases internal energy)
(b) (i) zero
A1
(ii) work done $=p \Delta V$

$$
\begin{aligned}
& =4.0 \times 10^{5} \times 6 \times 10^{4} \\
& =240 \mathrm{~J} \quad \text { (ignore any sign) }
\end{aligned}
$$

(iii)

change	work done / J	heating / J	increase in internal energy / J
$\mathrm{P} \rightarrow \mathrm{Q}$	$\mathbf{+ 2 4 0}$	-600	$\mathbf{- 3 6 0}$
$\mathrm{Q} \rightarrow \mathrm{R}$	0	+720	$\mathbf{+ 7 2 0}$
$\mathrm{R} \rightarrow \mathrm{P}$	$\mathbf{- 8 4 0}$	$\mathbf{+ 4 8 0}$	$\mathbf{- 3 6 0}$

[^1]| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | GCE AS/A LEVEL - October/November 2010 | 9702 | 42 |

3 (a) (i) resonance
(ii) amplitude 16 mm and frequency 4.6 Hz

A1 [1]
(b) (i) $a=(-) \omega^{2} x$ and $\omega=2 \pi f$

C1
$a=4 \pi^{2} \times 4.6^{2} \times 16 \times 10^{3}$
$=13.4 \mathrm{~ms}^{2}$
C1
(ii) $\begin{aligned} F & =m a \\ & =150 \times 10^{3} \times 13.4\end{aligned}$

$$
=2.0 \mathrm{~N}
$$

A1
(c) line always 'below' given line and never zero

M1
peak is at 4.6 Hz (or slightly less) and flatter
A1

4 (a) charge / potential (difference) (ratio must be clear)
(b) (i) $V=Q / 4 \pi \varepsilon_{0} r$
(ii) $C=Q / V=4 \pi \varepsilon_{0} r$ and $\underline{4 \pi \varepsilon_{0}} \underline{\text { is constant }} \quad$ M1
so $C \propto r$
A0
(c) (i) $r=C / 4 \pi \varepsilon_{0} r$

C1
$r=\left(6.8 \times 10^{12}\right) /\left(4 \pi \times 8.85 \times 10^{12}\right)$
C1
$=6.1 \times 10^{2} \mathrm{~m}$
A1
(ii) $Q=C V=6.8 \times 10^{12} \times 220$ $=1.5 \times 10^{9} \mathrm{C}$
(d) (i) $V=Q / C=\left(1.5 \times 10^{9}\right) /\left(18 \times 10^{12}\right)$ $=83 \mathrm{~V}$
(ii) either energy $=1 / 2 C V^{2}$

C1
$\Delta E=1 / 2 \times 6.8 \times 10^{12} \times 220^{2}-1 / 2 \times 18 \times 10^{12} \times 83^{2}$ C1
$=1.65 \times 10^{7}-6.2 \times 10^{8}$
$=1.03 \times 10^{7} \mathrm{~J}$
A1
or \quad energy $=1 / 2 Q V$
$\Delta E=1 / 2 \times 1.5 \times 10^{9} \times 220-1 / 2 \times 1.5 \times 10^{9} \times 83$

$$
=1.03 \times 10^{7} \mathrm{~J}
$$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9702	42

5 (a) field into (the plane of) the paper
B1 [1]
(b) force due to magnetic field provides the centripetal force

B1
$m v^{2} / r=B q v$
C1
$B=\left(20 \times 1.66 \times 10^{27} \times 1.40 \times 10^{5}\right) /\left(1.6 \times 10^{19} \times 6.4 \times 10^{2}\right)$ B1 $=0.454 \mathrm{~T}$ A0
[3]
(c) (i) semicircle with diameter greater than 12.8 cm B1
(ii) new flux density $=\frac{22}{20} \times 0.454$ C1

$$
B=0.499 \mathrm{~T}
$$

6 (a) (i) e.g. prevent flux losses / improve flux linkage B1
(ii) flux in core is changing \quad B1
e.m.f. / current (induced) in core

B1
induced current in core causes heating B1
$\begin{array}{ll}\text { (b) (i) that value of the direct current producing same (mean) power / heating } \\ \text { in a resistor } & \text { M1 }\end{array}$

$V_{\mathrm{P}} I_{\mathrm{P}}=V_{\mathrm{S}} I_{\mathrm{S}}$

7 (a) (i) e.g. electron / particle diffraction B1
(ii) e.g. photoelectric effect
(b) (i) 6
(ii) change in energy $=4.57 \times 10^{19} \mathrm{~J}$
$\lambda=h c / E$
$=\left(6.63 \times 10^{34} \times 3.0 \times 10^{8}\right) /\left(4.57 \times 10^{19}\right)$

C1
$=4.4 \times 10^{7} \mathrm{~m}$

8 (a) splitting of a heavy nucleus (not atom/nuclide) M1 into two (lighter) nuclei of approximately same mass A1
(b) ${ }_{0}^{1} n$
${ }_{2}^{4} \mathrm{He} \quad$ (allow $\left.{ }_{2}^{4} \alpha\right) \quad$ M2
${ }_{3}^{7} \mathrm{Li}$ A1
(c) emitted particles have kinetic energy B1range of particles in the control rods is short / particles stopped in rods /lose kinetic energy in rodsB1
kinetic energy of particles converted to thermal energy B1

Page 5	Mark Scheme: Teachers' version	Syllabus

Section B

9 (a) (i) non-inverting (amplifier)
(ii) $(G=) 1+R_{2} / R_{1}$
(b) (i) gain $=1+100 / 820$ output $=17 \mathrm{mV}$

$$
0
$$

(ii) 9 V

A1
(R_{2} / R_{1} scores 0 in (a)(ii) but possible 1 mark in each of (b)(i) and (b)(ii) ($1+R_{1} / R_{2}$) scores 0 in (a)(ii), no mark in (b)(i), possible 1 mark in (b)(ii) ($1-R_{2} / R_{1}$) or R_{1} / R_{2} scores 0 in (a)(ii), (b)(i) and (b)(ii))

10 (a) (i) density \times speed of wave (in the medium) B1
(ii) $\rho=\left(7.0 \times 10^{6}\right) / 4100$
$=1700 \mathrm{~kg} \mathrm{~m}^{3}$
(b) (i) $I=I_{\mathrm{T}}+I_{\mathrm{R}}$

B1
(ii) 1. $\alpha=\left(0.1 \times 10^{6}\right)^{2} /\left(3.1 \times 10^{6}\right)^{2}$

C1
$=0.001$
A1
2. $\alpha \approx 1$
(c) either very little transmission at an air-skin boundary M1
(almost) complete transmission at a gel-skin boundary M1 when wave travels in or out of the body A1
or no gel, majority reflection
with gel, little reflection
when wave travels in or out of the body

11 (a) (i) unwanted random power / signal / energy B1
(ii) loss of (signal) power / energy
(b) (i) either signal-to-noise ratio at mic. $=10 \lg \left(P_{2} / P_{1}\right)$
$=10 \lg \left(\left\{2.9 \times 10^{6}\right\} /\left\{3.4 \times 10^{9}\right\}\right)$

$$
=29 \mathrm{~dB}
$$

maximum length $=(29-24) / 12$

$$
=0.42 \mathrm{~km}=420 \mathrm{~m}
$$

or signal-to-noise ratio at receiver $=10 \lg \left(P_{2} / P_{1}\right)$
at receiver, $24=10 \lg \left(P /\left\{3.4 \times 10^{9}\right\}\right)$

$$
\begin{equation*}
P=8.54 \times 10^{7} \mathrm{~W} \tag{A1}
\end{equation*}
$$

power loss in cables $=10 \lg \left(\left\{2.9 \times 10^{6}\right\} /\left\{8.54 \times 10^{7}\right\}\right)$

$$
\begin{align*}
\text { length } & =5.3 / 12 \mathrm{~km} \tag{C1}\\
& =440 \mathrm{~m} \tag{A1}
\end{align*}
$$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	$\mathbf{9 7 0 2}$	$\mathbf{4 2}$

12 (a) (carrier wave) transmitted from Earth to satellite
satellite receives greatly attenuated signal
signal amplified and transmitted back to Earth
B1
at a different (carrier) frequency
B1
different frequencies prevent swamping of uplink signal
(1)
e.g. of frequencies used ($6 / 4 \mathrm{GHz}, 14 / 11 \mathrm{GHz}, 30 / 20 \mathrm{GHz}$) (two B1 marks plus any two other for additional physics)
(b) advantage: e.g. much shorter time delay M1
because orbits are much lower
A1
e.g. whole Earth may be covered in several orbits / with network
disadvantage: e.g. either must be tracked or limited use in any one orbit M1 more satellites required for continuous operation A1

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Section A

1
(a) (i) rate of change of angle / angular displacement swept out by radius

$$
\text { (ii) } \omega \times T=2 \pi
$$

(b) centripetal force is provided by the gravitational force
either $m r(2 \pi / T)^{2}=G M m / r^{2}$ or $m r \omega^{2}=G M m / r^{2}$ M1
$r^{3} \times 4 \pi^{2}=G M \times T^{2}$ A1
GM/4 π^{2} is a constant (c) A1

$$
T^{2}=c r^{3}
$$

A0
(c) (i) either $T^{2}=(45 / 1.08)^{3} \times 0.615^{2}$ or $T^{2}=0.30 \times 45^{3}$ $T=165$ years A1
(ii) $\begin{aligned} \text { speed } & =\left(2 \pi \times 1.08 \times 10^{8}\right) /(0.615 \times 365 \times 24 \times 3600) \\ & =35 \mathrm{~km} \mathrm{~s}^{1}\end{aligned}$ C1 A1

$$
=35 \mathrm{~km} \mathrm{~s}^{1}
$$

2 (a) atoms / molecules / particles behave as elastic (identical) spheres
volume of atoms / molecules negligible compared to volume of containing vessel
time of collision negligible to time between collisions
no forces of attraction or repulsion between atoms / molecules
atoms / molecules / particles are in (continuous) random motion
(any four, 1 each)
(b) $p V=\frac{1}{3} N m\left\langle c^{2}\right\rangle$ and $p V=n R T$ or $p V=N k T$
$\left.\frac{1}{3} N m<c^{2}\right\rangle=n R T$ or $=N k T$ and $\left\langle E_{k}\right\rangle=1 / 2 m\left\langle c^{2}\right\rangle$ B1
$n=N / N_{\mathrm{A}}$ or $k=R / N_{\mathrm{A}}$ B1
$<E_{\mathrm{K}}>=\frac{3}{2} \times R / N_{\mathrm{A}} \times T$ A0
(c) (i) reaction represents either build-up of nucleus from light nuclei or build-up of heavy nucleus from nuclei so fusion reaction
(ii) proton and deuterium nucleus will have equal kinetic energies
$1.2 \times 10^{14}=\frac{3}{2} \times 8.31 /\left(6.02 \times 10^{23}\right) \times T$
$T=5.8 \times 10^{8} \mathrm{~K}$ A1
(use of $E=2.4 \times 10^{14}$ giving $1.16 \times 10^{9} \mathrm{~K}$ scores 1 mark)
(iii) either inter-molecular / atomic / nuclear forces exist or proton and deuterium nucleus are positively charged / repel B1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	43

3 (a) (i) 8.0 cm
(ii) $2 \pi f=220$
$f=35 \quad$ (condone unit)
A1
(iii) line drawn mid-way between AB and $\mathrm{CD} \quad$ (allow $\pm 2 \mathrm{~mm}$)

B1
[2]
(iv) $\begin{aligned} v & =\omega a \\ & =220 \times 4.0 \\ & =880 \mathrm{~cm} \mathrm{~s}\end{aligned}$

C1
A1
(b) (i) 1. line drawn 3 cm above AB (allow $\pm 2 \mathrm{~mm}$)
2. arrow pointing upwards

B1
(ii) 1. line drawn 3 cm above AB (allow $\pm 2 \mathrm{~mm}$)

B1 [1]
2. arrow pointing downwards
B1 [1]
(iii) $v=\omega \sqrt{ }\left(a^{2}-x^{2}\right)$

$$
\begin{aligned}
&=220 \times \sqrt{ }\left(4.0^{2}-2.0^{2}\right) \\
&=760 \mathrm{~cm} \mathrm{~s} \\
& \text { (incorrect value for } x, 0 / 2 \text { marks) } \text { C1 } \\
& \text { (} 1
\end{aligned}
$$

4 (a) (i) work done moving unit positive charge
from infinity to the point
(ii) charge / potential (difference) (ratio must be clear)
(b) (i) capacitance $=\left(2.7 \times 10^{6}\right) /\left(150 \times 10^{3}\right)$
(allow any appropriate values)
capacitance $=1.8 \times 10^{11}$
(allow 1.8 ± 0.05)
(ii) either energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $Q=C V$
energy $=1 / 2 \times 1.8 \times 10^{11} \times\left(150 \times 10^{3}\right)^{2}$ or $1 / 2 \times 2.7 \times 10^{6} \times 150 \times 10^{3}$ $=0.20 \mathrm{~J}$
(c) either since energy $\propto V^{2}$, capacitor has $(1 / 2)^{2}$ of its energy left or full formula treatment C1
energy lost $=0.15 \mathrm{~J}$ A1

5 (a) magnetic flux $=B A$

$$
\begin{aligned}
& =89 \times 10^{3} \times 5.0 \times 10^{2} \times 2.4 \times 10^{2} \\
& =1.07 \times 10^{4} \mathrm{~Wb}
\end{aligned}
$$

(b) (i) e.m.f. $=\Delta \phi / \Delta t$ C1
$\left(\right.$ for $\Delta \phi=1.07 \times 10^{4} \mathrm{~Wb}$), $\Delta t=2.4 \times 10^{2} / 1.8=1.33 \times 10^{2} \mathrm{~s}$ C1
e.m.f. $=\left(1.07 \times 10^{4}\right) /\left(1.33 \times 10^{2}\right)$

$$
=8.0 \times 10^{3} \mathrm{~V}
$$

(ii) current $=8.0 \times 10^{3} / 0.12$ M1

$$
\approx 70 \mathrm{~mA}
$$

A0

[1]

(c) force on wire $=B I L$
$=89 \times 10^{3} \times 70 \times 10^{3} \times 5.0 \times 10^{2}$
C1
$\approx 3 \times 10^{4}(\mathrm{~N})$
suitable comment e.g. this force is too / very small (to be felt)

6 (a) power / heating depends on I^{2} M1
so independent of current direction
(b) either maximum power $=I_{0}{ }^{2} R$ or average power $=I_{\mathrm{RMS}}{ }^{2} R$
$I_{0}=\sqrt{ } 2 \times I_{\mathrm{RMS}}$ M1
maximum power $=2 \times$ average power ratio $=0.5$ A1

7 (a) force due to E-field is equal and opposite to force due to B-field

$$
E q=B q v
$$

$v=E / B$
(b) either charge and mass are not involved in the equation in (a)
or $\quad F_{E}$ and F_{B} are both doubled
or $\quad E, B$ and v do not change M1
so no deviation A1

8 (a) minimum frequency for electron to be emitted (from surface) \quad M1
(b) $E=h c / \lambda$ or $E=h f$ and $c=f \lambda$
either threshold wavelength $=\left(6.63 \times 10^{34} \times 3.0 \times 10^{8}\right) /\left(5.8 \times 10^{19}\right)$

$$
=340 \mathrm{~nm}
$$

or energy of 340 nm photon $=4.4 \times 10^{19} \mathrm{~J}$
or threshold frequency $=8.7 \times 10^{14} \mathrm{~Hz}$
or $\quad 450 \mathrm{~nm} \rightarrow 6.7 \times 10^{14} \mathrm{~Hz}$ A1
appropriate comment comparing wavelengths / energies / frequencies B1
so no effect on photo-electric current B1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	43

Section B

9 (a) (i) edges can be (clearly) distinguished
(ii) e.g. size of X -ray source / anode / target / aperture scattering of X-ray beam pixel size
(any two, 1 each)
B2
further detail e.g. use of lead grid
B1
(b) X-ray image involves a single exposure B1

CT scan: exposure of a slice from many different angles
M1
repeated for different slices
A1
CT scan involves a (much) greater exposure
B1

10 (a) e.g. infinite input impedance / resistance
zero output impedance / resistance
infinite gain
infinite bandwidth
infinite slew rate
(any three, 1 each) B3
(b) (i) with switch open, V is less (positive) than V^{+}M1
output is positive
A1
with switch closed, V is more (positive) than V^{+}so output is negative A1 (allow similar scheme if V more positive than V^{+}treated first)
(ii) 1. diodes connected correctly between output and earth M1
2. green identified correctly A1 (do not allow this mark if not argued in (i))

11 (a) (i) $I / I_{0}=\exp (-1.5 \times 2.9)$

$$
=0.013
$$

(ii) $I / I_{0}=\exp (-4.6 \times 0.95)$

$$
=0.013
$$(b) attenuation (coefficients) in muscle and in fat are similarB1

attenuation (coefficients) in bone and muscle / fat are different B1
contrast depends on difference in attenuation B1

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	43

12 (a) (i) 1. signal has same variation (with time) as the data B1
2. consists of (a series of) 'highs' and 'lows' \quad B1
either analogue is continuously variable (between limits)
or digital has no intermediate values B1
(ii) e.g. can be regenerated / noise can be eliminated
extra data can be added to check / correct transmitted signal (any two reasonable suggestions, 1 each)

B2
(b) (i) analogue signal is sampled at (regular time) intervals B1 sampled signal is converted into a binary number B1
(ii) one channel is required for each bit (of the digital number)

B1 [1]

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/51 Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	51

1 Planning (15 marks)

Defining the problem (3 marks)

P1 f is the independent variable and V is the dependent variable or vary f and measure V [1]
P2 Keep the current in coil X constant
P3 Keep the number of turns on coil (Y)/area of coil Y constant Do not credit reference to coil X only. [1]
Methods of data collection (5 marks)
M1 Two independent coils labelled X and Y.[1]
M2 Alternating power supply/signal generator connected to coil X in a workable circuit. [1]
M3 Coil Y connected to voltmeter/c.r.o. in a workable circuit. [1]
M4 Use c.r.o. to determine period/frequency or read off signal generator. [1]
M5 Method to keep current constant in coil X : adjust signal generator/use of rheostat. [1]
Method of analysis (2 marks)
A1 Plot a graph of V against f. [1]
A2 Relationship valid if straight line through origin [1]
Safety considerations (1 mark)
S1 Reference to hot coils - switch off when not in use/use gloves/do not touch coils. Must refer to hot coils. [1]
Additional detail (4 marks)
D1/2/3/4 Relevant points might include[4]

1. Use large current in coil X /large number of coils on coil Y (to increase emf).
2. Use iron core (to increase emf).
3. Detail on measuring emf e.g. height $\times y$-gain.
4. Avoid other alternating magnetic fields.
5. Detail on measuring frequency from c.r.o. to determine period and hence f.
6. Use of ammeter/c.r.o. and resistor to check current is constant
7. Use insulated wire for coils.
8. Keep coil Y and coil X in the same relative positions.

Do not allow vague computer methods.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	51

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer		Additional Guidance
(a)	A1	$\begin{aligned} & \text { Gradient }=b \\ & y \text {-intercept }=\lg a \end{aligned}$		Allow log a but not In a
(b)	$\begin{aligned} & \text { T1 } \\ & \text { T2 } \end{aligned}$	1.9777 1.9294 1.8751 1.8129 1.7404 1.6532	0.292 or 0.2923 0.265 or 0.2648 0.241 or 0.2405 0.210 or 0.2095 0.170 or 0.1703 0.127 or 0.1271	T1 for lg lcolumn - ignore rounding errors; min 2 dp . T2 for Ig T column - must be values given A mixture is allowed
	U1	$\text { From } \pm 0.004 \text { or } \pm 0.005 \text { to } \pm 0.006$$\text { or } \pm 0.007$		Allow more than one significant figure.
(c) (i)	G1	Six points plotted correctly		Must be within half a small square; penalise \geq half a small square. Penalise 'blobs' \geq half a small square. Ecf allowed from table.
	U2	Error bars in $\lg (T / s)$ plotted correctly.		All error bars must be plotted. Check first and last point. Must be accurate within half a small square; penalise \geq half a small square.
(ii)	G2	Line of best fit		If points are plotted correctly then lower end of line should pass between $(1.65,0.124)$ and ($1.65,0.128$) and upper end of line should pass between $(2.00,0.300)$ and $(2.00,0.306)$. Allow ecf from points plotted incorrectly; five trend plots needed - examiner judgement.
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars.		Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.
(iii)	C1	Gradient of best fit line		The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise \geq half a small square.
	U3	Uncertainty in gradient		Method of determining absolute uncertainty Difference in worst gradient and gradient.
(iv)	C 2	y-intercept		Must be negative. Check substitution of point from line into $c=y-m x$. Allow ecf from (c)(iii).

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	51

	U4	Uncertainty in y-intercept	Method of determining absolute uncertainty Difference in worst y-intercept and y-intercept. Do not allow ecf from false origin read-off (FOX). Allow ecf from (c)(iv).
(d)	C3	$a=10^{\text {y intercept }}$	y-intercept must be used. Expect an answer of about 0.19. If FOX expect answer of about 1.3.
	C4	$b=$ gradient and in the range 0.495 to 0.520 and to 2 or 3 sf	Allow 0.50 to 0.52 to 2 sf Penalise 1 sf or ≥ 4 sf
	U5	Absolute uncertainty in a and b	Difference in a and worst a. Uncertainty in b should be the same as the uncertainty in the gradient.

[Total: 15]

Uncertainties in Question 2

(c) (iii) Gradient [U3]

1. Uncertainty = gradient of line of best fit - gradient of worst acceptable line
2. Uncertainty $=1 / 2$ (steepest worst line gradient - shallowest worst line gradient)
(c) (iv) [U4]
3. Uncertainty $=y$-intercept of line of best fit $-y$-intercept of worst acceptable line
4. Uncertainty $=1 / 2(y$-intercept of steepest worst line $-y$-intercept of shallowest worst line)
(d) [U5]
5. Uncertainty $=10^{\text {best } y \text { intercept }}-10^{\text {worst } y \text { intercept }}$

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/52 Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	52

1 Planning (15 marks)

Defining the problem (3 marks)

P1 f is the independent variable and V is the dependent variable or vary f and measure V
P2 Keep the current in coil X constant
P3 Keep the number of turns on coil (Y)/area of coil Y constant Do not credit reference to coil X only.

Methods of data collection (5 marks)

M1 Two independent coils labelled X and Y .
M2 Alternating power supply/signal generator connected to coil X in a workable circuit.
M3 Coil Y connected to voltmeter/c.r.o. in a workable circuit.
M4 Use c.r.o. to determine period/frequency or read off signal generator.
M5 Method to keep current constant in coil X : adjust signal generator/use of rheostat.

Method of analysis (2 marks)

A1 Plot a graph of V against f.
A2 Relationship valid if straight line through origin [1]
Safety considerations (1 mark)
S1 Reference to hot coils - switch off when not in use/use gloves/do not touch coils. Must refer to hot coils.

Additional detail (4 marks)

D1/2/3/4 Relevant points might include

1. Use large current in coil X /large number of coils on coil Y (to increase emf).
2. Use iron core (to increase emf).
3. Detail on measuring emf e.g. height $\times y$-gain.
4. Avoid other alternating magnetic fields.
5. Detail on measuring frequency from c.r.o. to determine period and hence f.
6. Use of ammeter/c.r.o. and resistor to check current is constant
7. Use insulated wire for coils.
8. Keep coil Y and coil X in the same relative positions.

Do not allow vague computer methods.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	52

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer		Additional Guidance
(a)	A1	$\begin{aligned} & \text { Gradient }=b \\ & y \text {-intercept }=\lg a \end{aligned}$		Allow log a but not In a
(b)	$\begin{aligned} & \text { T1 } \\ & \text { T2 } \end{aligned}$	1.9777 1.9294 1.8751 1.8129 1.7404 1.6532	0.292 or 0.2923 0.265 or 0.2648 0.241 or 0.2405 0.210 or 0.2095 0.170 or 0.1703 0.127 or 0.1271	T1 for lg lcolumn - ignore rounding errors; min 2 dp . T2 for Ig T column - must be values given A mixture is allowed
	U1	$\text { From } \pm 0.004 \text { or } \pm 0.005 \text { to } \pm 0.006$$\text { or } \pm 0.007$		Allow more than one significant figure.
(c) (i)	G1	Six points plotted correctly		Must be within half a small square; penalise \geq half a small square. Penalise 'blobs' \geq half a small square. Ecf allowed from table.
	U2	Error bars in $\lg (T / s)$ plotted correctly.		All error bars must be plotted. Check first and last point. Must be accurate within half a small square; penalise \geq half a small square.
(ii)	G2	Line of best fit		If points are plotted correctly then lower end of line should pass between $(1.65,0.124)$ and ($1.65,0.128$) and upper end of line should pass between $(2.00,0.300)$ and $(2.00,0.306)$. Allow ecf from points plotted incorrectly; five trend plots needed - examiner judgement.
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars.		Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.
(iii)	C1	Gradient of best fit line		The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise \geq half a small square.
	U3	Uncertainty in gradient		Method of determining absolute uncertainty Difference in worst gradient and gradient.
(iv)	C 2	y-intercept		Must be negative. Check substitution of point from line into $c=y-m x$. Allow ecf from (c)(iii).

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	52

	U4	Uncertainty in y-intercept	Method of determining absolute uncertainty Difference in worst y-intercept and y-intercept. Do not allow ecf from false origin read-off (FOX). Allow ecf from (c)(iv).
(d)	C3	$a=10^{\text {y intercept }}$	y-intercept must be used. Expect an answer of about 0.19. If FOX expect answer of about 1.3.
	C4	$b=$ gradient and in the range 0.495 to 0.520 and to 2 or 3 sf	Allow 0.50 to 0.52 to 2 sf Penalise 1 sf or ≥ 4 sf
	U5	Absolute uncertainty in a and b	Difference in a and worst a. Uncertainty in b should be the same as the uncertainty in the gradient.

[Total: 15]

Uncertainties in Question 2

(c) (iii) Gradient [U3]

1. Uncertainty = gradient of line of best fit - gradient of worst acceptable line
2. Uncertainty $=1 / 2$ (steepest worst line gradient - shallowest worst line gradient)
(c) (iv) [U4]
3. Uncertainty $=y$-intercept of line of best fit $-y$-intercept of worst acceptable line
4. Uncertainty $=1 / 2(y$-intercept of steepest worst line $-y$-intercept of shallowest worst line)
(d) [U5]
5. Uncertainty $=10^{\text {best } y \text { intercept }}-10^{\text {worst } y \text { intercept }}$

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/53 Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	53

1 Planning (15 marks)

Defining the problem (3 marks)

P1 c, d or A is the independent variable and R is the dependent variable or vary c, d or A and measure R.
P2 If c varied then (t and) d or A kept constant, if d varied then (t and) c or A kept constant, if A varied then c or d kept constant.
P3 Keep temperature constant.

Methods of data collection (5 marks)

M1 Circuit diagram to measure resistance.
M2 Use micrometer screw gauge to measure d or t. (Allow digital or vernier callipers) [1]
M3 Measure c with a ruler/metre rule.
M4 Method of making contact with the strip e.g. use electrodes of at least same dimension as c or d or t or conducting paint methods. Do not allow crocodile clips, unless it is clear that the whole area of the end of the strip is covered.
M5 Method to determine resistance.

Method of analysis (2 marks)

A1 Plot a graph of R against $c, 1 / d$ or $1 / A$ depending on orientation. Other alternatives possible, e.g. R against $1 / c$ depending on orientation

A2 Must be consistent with A1: $\rho=A \times$ gradient or $t \times$ gradient $/ c$
Other alternatives possible, e.g. $\rho=d \times$ gradient $/ t$

Safety considerations (1 mark)

S1 Reference sharp edges or cutting metals, e.g. wear gloves.
Additional detail (4 marks)
D1/2/3/4 Relevant points might include

1. Insulate aluminium strip
2. Take many readings of t or d and average
3. Use a protective resistor/circuit designed to reduce current
4. Rearrange equation to determine graph using c, d and t or A
5. Determine typical resistance of aluminium strip
6. Likely meter range of ammeter/voltmeter/ohmmeter
7. Detail on cutting strip e.g. mark using set square

Do not allow vague computer methods.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	53

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer		Additional Guidance
(a)	A1	$\frac{t}{C}$		Must be negative. Allow $\frac{15}{C}$.
(b)	$\begin{aligned} & \text { T1 } \\ & \text { T2 } \end{aligned}$	150 100 66.7 50.0 33.3	1.28 or 1.281 1.61 or 1.609 1.86 or 1.856 1.97 or 1.974 2.08 or 2.079	T1 for $1 / R$ column - ignore sf and rounding errors T2 for $\ln (V / V)$ column - must be values given A mixture is allowed
	U1	$\begin{aligned} & \text { From } \pm 0.05 \text { or } \pm 0.06 \text { to } \pm 0.02 \text { or } \\ & \pm 0.03 \end{aligned}$		Allow more than one significant figure.
(c) (i)	G1	Five points plotted correctly		Must be within half a small square; penalise \geq half a small square. Ecf allowed from table. Penalise 'blobs' \geq half a small square.
	U2	Error bars in $\ln (V / \mathrm{V})$ plotted correctly.		All plots to have error bars; penalise \geq half a small square. Check first and last point. Must be accurate within half a small square.
(ii)	G2	Line of best fit		If points are plotted correctly then upper end of line should pass between $(20,2.16)$ and $(20,2.18)$ and lower end of line should pass between (160, 1.20) and (160, 1.225). Allow ecf from points plotted incorrectly - examiner judgement.
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars.		Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.
(iii)	C1	Gradient of best fit line Must be negative		The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise \geq half a small square. Do not penalise POT.
	U3	Uncertainty in gradient		Method of determining absolute uncertainty. Difference in worst gradient and gradient.
(d) (i)	C 2	$C=-15 /$ gradient		Gradient must be used. Allow ecf from (c)(iii). Do not penalise POT.
	C3	$2.14 \times 10^{3} \mathrm{~F}$ to $2.24 \times 10^{3} \mathrm{~F}$ and to 2 or 3 sf		Must be in range - penalise POT. Allow equivalent unit including s $\Omega{ }^{1}, \mathrm{C} V{ }^{1}$, As V^{1}

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9702	53

(ii)	U4	Determines \% uncertainty in C	Uses worst gradient or worst calculated C value. Do not check calculation.				
(e)	C4	Determines R correctly	Expect to see an answer about 3000Ω. $R=6.514 / c a n d i d a t e ' s ~$ $C ;$ allow ecf from (d)(i)	$	$	(determines worst value of R or (d)(ii) $\times R$	
:---	:---						
	U5						

[Total: 15]

Uncertainties in Question 2

(c) (iii) Gradient [U3]

1. Uncertainty $=$ gradient of line of best fit - gradient of worst acceptable line
2. Uncertainty $=1 / 2$ (steepest worst line gradient - shallowest worst line gradient)
(d) (ii) [U4]
3. Works out worst C then determines $\%$ uncertainty
4. Works out percentage uncertainty in gradient
(e) [U5]
5. Works out worst R then determines difference
6. $\Delta R=\left(\frac{\Delta \text { gradient }}{\text { gradient }}\right) R=\left(\frac{\Delta C}{C}\right) R$

[^0]: (correct signs essential)
 (each horizontal line correct, 1 mark - max 3)

[^1]: (correct signs essential)
 (each horizontal line correct, 1 mark - max 3)

