MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/31

Paper 31 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

	Pa	ge 2)	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – October/November 2010	9702	31
1	(a)	(i)	No ł	nelp from Supervisor.		[1]
		(ii)	Valu	les of <i>a</i> and <i>b</i> with consistent units to the nearest mm.		[1]
	(b)	Inco	orrect	of readings of a , b and R scores 5 marks, five sets sco t trend then -1. Correct trend b/a increases, R increase of from supervisor -1.		[5]
		Rar	nge: เ	used $R = 8000 \Omega$ or 7000 Ω .		[1]
		Mu Eac Ign The	st hav ch col ore a ere m	headings (R/Ω , a/m , b/m , b/a). ve R and either b/a <u>or</u> a and b columns. Jumn heading must contain a quantity and a unit where ny units in the body of the table. ust be some distinguishing mark between the quantity d but accept, for example, R (Ω).		[1] solidus is
				ency of presentation of readings. s of raw <i>a</i> and <i>b</i> must be given to the nearest mm.		[1]
		Sig	nifica	nt figures. nt figures for <i>b/a</i> must be the same as, or one more t in <i>a</i> or <i>b</i> .	han, the least n	[1] umber of
		Cor	rect	calculation of <i>b/a</i> .		[1]
	(c)	(i)	Sca grid Sca	s: sible scales must be used. No awkward scales (e.g. 3 les must be chosen so that the plotted points occupy in both <i>x</i> and <i>y</i> directions. les must be labelled with the quantity which is being plo le markings should be no more than three large square	y at least half th otted. Ignore un	
			Writ Ring Wor	bservations must be plotted. Ignore any plot off the gr e a ringed total of plotted points. g and check a suspect point. k to an accuracy of half a small square. not accept blobs (points with diameter > 0.5 small squa		[1]
		(ii)	Judo The leng	of best fit. ge by balance of at least 5 trend points about candidate re must be an even distribution of points either side th. must not be kinked. Do not allow lines thicker than ha	of the line along	-
				lity. tter of points must be less than ± 200 Ω in the <i>R</i> – axis points in the table must be plotted (at least 5) for this ma	•	
		(iii)	The	dient. hypotenuse of the triangle must be at least half the ler n read-offs must be accurate to half a small square.	ngth of the drawr	[1] n line.

GCE AS/A LEVEL – October/November 2010 $x = \frac{1}{X}$ X in range 3000–3600 Ω with unit.	9702	<u>31</u> [
		[
eading off graph		
		[Total: 2
surement of <i>h</i> to nearest mm with consistent unit. 0.9	00 m < h < 1.100 r	n
e of $m_{\rm A} - m_{\rm B}$ = 20 g with consistent unit.		
te of t with unit. $t < 5$ seconds		
ence of repeated measurements of t.		
	he half the range	2
nethod of calculation to get percentage uncertainty.		
value of $m_{\rm A} - m_{\rm B}$ = 40 g		
value of <i>t</i> .		
es of <i>k</i> calculated correctly.		
ification of sf in k linked t and $(m_{\rm A}-m_{\rm B})$ or $m_{\rm A}$ and $m_{\rm B}$	or masses.	
d conclusion based on the calculated values of <i>k</i> .		
a uuuud etterr	ue of $m_A - m_B = 20$ g with consistent unit. ue of <i>t</i> with unit. <i>t</i> < 5 seconds dence of repeated measurements of <i>t</i> . e uncertainty in <i>t</i> in range 0.1–0.6 s. ted readings have been taken, then the uncertainty car method of calculation to get percentage uncertainty. value of $m_A - m_B = 40$ g value of <i>t</i> . second value of <i>t</i> < first value of <i>t</i> . ues of <i>k</i> calculated correctly.	asurement of <i>h</i> to nearest mm with consistent unit. 0.900 m < h < 1.100 m ue of $m_A - m_B = 20$ g with consistent unit. ue of <i>t</i> with unit. <i>t</i> < 5 seconds dence of repeated measurements of <i>t</i> . e uncertainty in <i>t</i> in range 0.1–0.6 s. ted readings have been taken, then the uncertainty can be half the range method of calculation to get percentage uncertainty. value of $m_A - m_B = 40$ g value of <i>t</i> . second value of <i>t</i> < first value of <i>t</i> . ues of <i>k</i> calculated correctly. tification of sf in <i>k</i> linked <i>t</i> and $(m_A - m_B)$ or m_A and m_B or masses. id conclusion based on the calculated values of <i>k</i> .

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9702	31

(h) Identifying limitations marks and suggesting improvements

(i)	Limitations [4]	(ii)	Improvements [4]	Do not credit
A _p	Two readings are not enough (to draw a conclusion)	As	Take more readings <u>and</u> plot a graph/calculate more values of <i>k</i> .	One reading/few readings/take more readings and average.
B _p	Masses hit each other/ masses slipping off.	Bs	Use larger pulley/method of securing masses to hanger.	
C _p	Uncertain starting position	Cs	Method of fixing rule e.g. clamp rule/electromagnetic release mechanism	
Dp	Difficult to measure time as time short/reaction time large compared with time.	Ds	Drop through greater height/ expand on trap door mechanism/ light gate with timer/motion sensor with data logger/video timer with timer.	
Ep	Friction at pulley	Es	Lubricate pulley	Friction between pulley and string
F_{p}	Retort stand moves	Fs	Method of fixing to the bench e.g. clamp/add weights	
G _p	Mass (values) not accurate	Gs	Use balance/method of measuring mass	

Do not credit parallax error.

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/33

Paper 31 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

Р	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2010	9702	33
(a	i) (ii) Valu	e of raw <i>h</i> to the nearest mm (unit needed). <i>h</i> > 20 cm	1.	[1
(b	of swings	e of repeat times: of one swing repeated several times s recorded at least once (not fixed time and count n). 0.5 < T < 3 s.	<u>or</u> the time for a	number [1
(c	Incorrect	of readings of x and T scores 5 marks, five sets scores or no trend then -1 (Correct trend x increases, T^2 decinged total next to the table.		
	Maximun	n value of x at least $h/2$.		[1
	Must hav Each col Ignore ar There m	headings (x / m , x / mm , T / s , T^2/s^2). ve x and T^2 columns. umn heading must contain a quantity and a unit. ny units in the body of the table. ust be some distinguishing mark between the quantity I but accept, for example, x (m)).	/ and the unit (s	[1 solidus is
	All value	ncy of presentation of <u>raw</u> readings. s of raw <i>x</i> must be given to the nearest mm and all v mber of d.p. (either 1 or 2).	alues of raw tin	[1 ne to the
	Significar significar	nt figures. nt figures for T^2 must be the same as, or one more th nt figures used in the raw time data. Also if raw time th of a second accept one less significant figure in T^2 .		
	Correct o	calculation of T^2 . Do not allow t^2 .		[1

	6	Mark Scheme: Teachers' versi	ion	Syllabus	Paper
		GCE AS/A LEVEL – October/Novem		9702	33
(d) (i)	Sens Scale grid i Scale	ble scales must be used. No awkward so s must be chosen so that the plotted p both <i>x</i> and <i>y</i> directions. s must be labelled with the quantity whic markings should be no more than three	ooints occupy	v at least half th otted. Ignore un	•
	Write Ring Work	servations must be plotted on the grid. a ringed total of plotted points. and check a suspect plot. to an accuracy of half a small square. t accept blobs (points with diameter > 0.	5 small squa	re).	[
(ii)	Judg Ther lengt	f best fit. by balance of at least 5 points about the must be an even distribution of points nust not be kinked. Do not allow lines th	either side o	of the line along	-
		er of points must be less than ± 1 cm (nt line. All points in table must be plo	. ,	· · ·	
(iii)	The	ent. ive sign must be seen on answer line co ypotenuse of the triangle must be at leas ead-offs must be accurate to half a sma	st half the len		ı line.
	Read Or:	•	are. Allow ec	•	
(e) Val	ue of	$\frac{A}{B} = \frac{y}{ } \frac{y}{ }$ (Expect value to be apply	proximately e	qual to <i>h</i>).	I

Pa	ige 4			Syllabus	Paper
		GCE AS/A LEVEL – October/Novemb	er 2010	9702	33
		ement of d_A in range 0.20 mm < d_A < 0.40 mm to ent unit. If OOR allow SV ± 0.10 mm.	nearest 0.01	mm or 0.001	mm with
Evi	denc	e of repeated measurements of <i>d</i> (or in (e)).			I
(c)	(i)	Measurement of L to nearest mm with consister	nt unit.		I
	(ii)	Absolute uncertainty in <i>L</i> is 2 mm–10 mm.			
		If repeated readings have been taken, then the Correct method of calculation to get percentage		an be half the	range.
(d)	(ii)	Measurement of V_A . Any supervisor's help -1 .			I
(e)	Val	ue of $d_{\rm B}$. Major help from supervisor –1.			I
(f)	(ii)	Measurement of $V_{\rm B}$ to at least nearest 0.1 V wit	h unit. V < 2 ∖	/. If > 2 V che	eck SV.
		Quality: $V_{\rm B} < V_{\rm A.}$			I
(g)	(i)	Values of <i>k</i> calculated correctly.			I
	(ii)	Justification of sf in k linked to L and d and V .			I
	(iii)	Valid conclusion based on the calculated values Candidate must test against a stated criterion.	s of <i>k</i> .		I

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9702	33
			•

(i)	Limitations [4]	(ii)	Improvements [[4]	Do not credit
Ap	Two readings are not enough (to draw a conclusion.	As	Take more readings <u>and</u> plot a graph/calculate more values of k.		One reading/ few readings/ take more readings and average.
Bp	Difficult to measure length because (give a reason) e.g. clips have a width/ clip slips. Difficult to make <i>L</i> the same (for both experiments).	Bs	Use sliding jockeys/narrower clips solder contacts/use longer wire (t reduce % error).		
C _p	Voltmeter scale not sensitive enough/not precise enough/only reads to 0.1 or 0.05 V.	Cs	Use digital voltmeter/use a voltmeter that reads to 0.01 V.		Voltmeter not accurate enough. More accurate voltmeter.
D _p	Wires kinked/Wires not straight/Difficult to keep wire straight/difficult to prevent short circuiting.	Ds	Method of keeping wire (during experiment) straight e.g. tape to ruler, hang weights off end, clamp wire.	С	Parallax error.
Ep	Difficult to make <i>I</i> the same (for both experiments).	Es	Method to obtain continuous variation in the current e.g. (slide wire) potentiometer/potential divider/finer wire rheostat/longer rheostat.		
Fp	Contact resistance/ fluctuating ammeter or voltmeter readings.	Fs	Method of cleaning contacts e.g. sand clips. Tighten clips.		

Ignore reference to parallax error, zero error on meters, heating effects of wire, cell runs down, video the experiment.

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/34

Paper 32 (Advanced Practical Skills 2), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

Page 2	2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2010	9702	34
• •		ments for h_1 and h_2 to nearest mm w values if readings are repeated.		[1]
The	e diffe	rence between h_1 and h_2 is < 2 mm.		[1]
(d) (iii)	4 ma Incoi	sets of readings of n , h_1 and h_2 scores 5 marks, five searks etc. rrect trend then -1. from supervisor then -1.	ts scores	[5]
	Ranı <i>n</i> val	ge – lues must include 10 or greater.		[1]
	Each Ther	mn headings – n column heading must contain a quantity and a unit w re must be some distinguishing mark between the qua h_1 /cm or h_1 (cm) but not 1/(($h_1 - h_1$)/cm).		
		sistency of presentation of raw readings – alues of h_1 and h_2 must be given to the same precisior	۱.	[1]
		ificant figures – for $1/(h_1 - h_2)$ must be the same as, or one more than h_2).	, the s.f. in the di	[1] fference
		ulation – $-h_2$) calculated correctly.		[1]
(Graph)	Sens chos and	sible scales must be used, no awkward scales (e.g. en so that the plotted points must occupy at least hal <i>y</i> directions.	f the graph grid i	n both <i>x</i>
		es must be labelled with the quantity which is being pl e markings must be no more than 3 large squares apa	-	ts.
	All ol Do n Ring	ing of points – bservations must be plotted. ot accept blobs (points with diameter > half a small so and check a suspect plot. Tick if correct. Re-plot if ir k to an accuracy of half a small square.	, ,	[1]
	Judg be a	of best fit – ge by balance of at least 5 trend points about the can n even distribution of points either side of the line alon must not be kinked.		[1] ere must
		lity – ter of points must be less than ±0.02 on the 1/ <i>n</i> axis a oints must be plotted (at least 5) for this mark to be sc		[1] er's line.

P	age	3	Mark Scheme: Teachers' version	Syllabus	Paper
	uge	•	GCE AS/A LEVEL – October/November 2010	9702	34
(e)	(e) (iii)		dient hypotenuse must be at least half the length of the drav n read-offs must be accurate to half a small square.	vn line.	[1]
			rcept ck that the read-off or the method of calculation is corre	ect.	[1]
(f)			a = value of gradient and value of b = value of intercep llow a value presented as a fraction.	ot.	[1]
	Ε.	g. cm	<i>a</i> and <i>b</i> are correct. ¹ or m ¹ but must be consistent with the values. unit for <i>b</i> if $b = 0$.		[1]
					[Total: 20]
2 (a)) (i)		ie of <i>d</i> in range 5 cm to 15 cm. from supervisor then –1.		[1]
		Evid	lence of repeated measurements of <i>d</i> .		[1]
	(ii)		The rect calculation of A . The not allow a value in terms of π .		[1]
(b)) (i)	Mea	surement for <i>x</i> in range 0.8 cm < <i>x</i> < 1.0 cm to nearest r	nm.	[1]
	(ii)		olute uncertainty 1 or 2 mm (or half the range of repealled alculation.	ats), and correct	method [1]
(c)) (ii)	Mea	surement for <i>h</i> to nearest mm.		[1]
(d)) (iii)		e for <i>t</i> > 1 s and given to 0.1 s or 0.01 s. ck raw data if there are repeats.		[1]
	(iv)	Corr	rect calculation of R , with consistent unit (e.g. cm ³ s ⁻¹).		[1]
(e)) (i)	Valu	ies for <i>x</i> , <i>V</i> and <i>h</i> .		[1]
	(ii)	Corr	rect trend (R increases with h).		[1]
(f)) (i)	Valu	les of <i>k</i> calculated correctly.		[1]
	(ii)		d conclusion based on the calculated values of <i>k</i> . Car ated criterion.	ndidate must test	t against [1]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9702	34

(a)	
(3)	

	(i) Problems 4 max	(ii) Improvements 4 max	No credit/not enough
A	Two readings are not enough (to draw a conclusion).	Take more readings, and plot a graph/calculate more <i>k</i> values.	More readings and calculate the average/ only one reading.
В	Bottle not circular/ diameter at P different to that at Q.	Collect water and measure volume/remeasure diameter at P.	
С	Bottle deforms when measuring <i>d</i> .	Use vernier callipers <u>to</u> <u>measure <i>d</i>.</u>	Use string to measure <i>d</i> .
D	Difficult to see water level/meniscus problems/refraction problems.	Use coloured water/liquid.	Use oil.
Е	Labels get wet/ink runs	Use waterproof labels/ink	
F	Difficult to judge when to start/stop timing.	Use video, <u>with timing</u> <u>method</u> .	Human reaction time error.
G	Large uncertainty in <i>x</i> .	Use travelling microscope <u>to measure x</u> .	
Х	Another valid point E.g. Flowrate calculated is not the flowrate at <i>h</i> .	E.g. Measure <i>h</i> to point midway between marks.	Move marks closer together.

Ignore 'parallax problems' unless there is a convincing diagram.

Ignore 'use assistant'.

Ignore 'use distance sensor' unless there is a convincing diagram.

Ignore 'use a computer/datalogger/light gates'. Ignore 'bottle not vertical'.

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/35

Paper 31 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

Pa	age 2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2010	9702	35
1 (a)	()	e of <i>d</i> to the nearest 0.01 mm or 0.001 mm with consis < <i>d</i> < 0.60 mm.	stent unit.	[1]
(b)	• •	e of <i>x</i> in range 40 cm–60 cm with consistent unit. e of <i>I</i> with units.		[1]
(c)		of readings of x and I scores 5 marks, five sets score n –1. Minor help from supervisor –1 ; major help from		Incorrect [5]
	Range x _{max} > 70	cm; x _{min} < 30 cm		[1]
	There mu	neadings umn heading must contain a quantity and a unit. ust be some distinguishing mark between the quantity s expected but accept, for example, 1/ <i>I</i> (A ⁻¹). Do not a		[1]
		ncy of presentation of <u>raw</u> readings. s of <i>x</i> must be given to the nearest mm.		[1]
		nt figures /I must be the same as, or one more than, the lea sed in raw I.	st number of s	[1] ignificant
	Calculati Correct o	on alculation of 1/ <i>I</i> .		[1]

Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2010	9702	35
(d) (i)	Sensil Scales grid in Scales	ble scales must be used. Awkward scales (e.g. 3:10) s must be chosen so that the plotted points occupy both <i>x</i> and <i>y</i> directions. s must be labelled with the quantity which is being plo markings should be no more than three large square	/ at least half the stream of	he graph
	All obs Do no Ring a	ng of points servations must be plotted on the grid. It accept blobs (points with diameter > 0.5 small squa and check a suspect plot. to an accuracy of half a small square.	re).	[:
(ii)	Judge There length	of best fit by the balance of at least 5 points about the candida must be an even distribution of points either side n. must not be kinked. Do not accept lines thicker than	of the line along	•
	•	y ints in the table (minimum 5) must be plotted for this must be within 2 cm (to scale) in <i>x</i> direction of a stra		[[·] ored. All
(iii)	The h	ent ypotenuse of the triangle must be at least half the len ead-offs must be accurate to half a small square.	igth of the drawi	[[′] n line.
	Read- Or:	: c correct read-off from a point on the line, and subs -off must be accurate to half a small square. Allow ec		
	Check	< read-off of intercept directly from graph.		
		tained in (a)(ii) and (d)(iii) substituted correctly into e	quation: $\frac{M}{N} = \frac{\mu}{A}$	2 R [
		o in range: 1 × 10 7 Ω m – 5 × 10 6 Ω m with consister		[

	Page 4	1	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – October/November 2010	9702	35
2	(a) (ii)		surement of x to nearest mm. $x < 15.0$ cm with consistor supervisor's help.	tent unit.	[1]
	(b) (iii)	Mea	surement of θ (less than 90°) with unit.		[1]
	(iv)	lf rep	plute uncertainty in $θ$ in the range 2°–10°. Deated readings have been taken, then the uncertainty rect method of calculation of percentage uncertainty.	r can be half the	[1] range.
	(v)	<i>m</i> =	50 g with consistent unit		[1]
		<i>M</i> =	60 g with consistent unit		[1]
	(vi)	Corr	ect calculation of m/M (0.83 or 0.833). No units.		[1]
	(c) Me	asure	ment of θ		[1]
	<i>m</i> =	= 40 g	; <i>M</i> = 70 g		[1]
	Qu	ality: ($\theta_2 > \theta_1$		[1]
	(d) (i)	Corr	ect calculation of two values of <i>k</i> .		[1]
	(ii)	Justi	ification of sf in k linked to θ , m and M		[1]
	(iii)		d conclusion based on the calculated values of <i>k</i> . didate must test against a stated criterion.		[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9702	35

(e) Identifying limitations (4 marks) and suggesting improvements (4 marks)

	(i) Limitations [4]	(ii) Improvements [4]	Do not credit
A	Two readings are not enough (to draw a conclusion.	Take more readings and plot a graph/calculate more <i>k</i> values (and compare).	Few readings. Take more readings and calculate average. Only one reading.
В	Difficult to balance <u>with</u> <u>reason</u> e.g. unstable or effect of fans/draughts/a.c.	Drill hole higher up/switch off fans/a.c./close windows.	Closed room.
С	Difficult to <u>judge</u> when wooden strip horizontal/parallel (to the bench).	<u>Method</u> of ensuring strip is horizontal/parallel to bench e.g. use a spirit level or metre rule(s) to measure height of both ends/sight against window. Allow <u>detailed</u> use of set square.	Strip not straight/parallel/ horizontal. Use set square.
D	Difficult keeping <i>x</i> constant/ weights move.	<u>Method</u> of fixing cotton loop to rule e.g. tape, glue.	
E	Difficult to measure θ <u>because</u> hard to judge vertical/movement of hand.	Use a plumb line/clamped ruler/clamp protractor.	Bigger protractor. Paper behind protractor.
F	Friction at pulley/between nail and wooden strip.	Use lubricant/method of reducing friction.	Friction. Better pulley/ smooth(er) string/thin(ner) string. Friction between string and pulley. Lubrication between string and pulley.
G	Mass (values) not accurate.	Use balance/method of weighing mass.	Weigh masses.

Do not credit 'parallax problems', 'use assistant' or references to sensors, computers or videos.

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

Page	2		rk Scheme: Tea			labus	Paper	•
		GCE AS	A LEVEL – Octo	ber/November 2	2010 9	702	41	
			S	Section A				
I (a) fo	orce pe	r unit mass	(ratio idea e	essential)			B1	[1]
(b) g	raph:	correct curva from (<i>R</i> ,1.0g	ature $g_{\rm S}$) & at least one	other correct poi	nt		M1 A1	[2]
(c) (i	•		d Moon are in op field found by sul	-	ald strength		M1	
	<i>or</i> so t	any other	sensible comme t where it is zero	nt	su s		A1 A0	[2]
(ii	(6.0	_E / x ² = GM _M / × 10 ²⁴) / (7.4 54 R _E	$(D-x)^2$ + × 10 ²²) = x ² / (60	$(R_{\rm E}-x)^2$			C1 C1 A1	[3]
(iii) grap	g_{E} and g_{N}	east ⅔ distance to i in opposite direo urvature (by eye)	tions	ırface		B1 M1 A1	[3]
2 (a) (i) no f	orces (of attr	action or repulsio	n) between atom	s / molecules /	particles	B1	[1]
(ii		n of kinetic ar to random m	d potential energ	y of atoms / mole	ecules		M1 A1	[2]
(iii		dom) kinetic ootential ener	energy increases	with temperatur	e		M1	
			emperature increa	ases internal ene	rgy)		A1	[2]
(b) (i) zero)					A1	[1]
(ii) wor	k done = $p\Delta$ = 4.0	$V \times 10^5 \times 6 \times 10^4$				C1	
		= 240		ny sign)			A1	[2]
(iii)							
		change	work done / J	heating / J	increase in ir	nternal		

change	work done / J	heating / J	increase in internal energy / J
$P \rightarrow Q$ $Q \rightarrow R$ $R \rightarrow P$	+240	600	-360
	0	+720	+720
	-840	+480	-360

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

	Page 3		6	Mark Scheme: Teachers' version	Syllabus	Paper	-
				GCE AS/A LEVEL – October/November 2010	9702	41	
3	(a)	i) (i) resonance			B1	[1]	
		(ii)	amp	litude 16mm and frequency 4.6Hz		A1	[1]
	(b)	(i)	a =	$(-)\omega^2 x$ and $\omega = 2\pi f$ $4\pi^2 \times 4.6^2 \times 16 \times 10^3$ 13.4 ms ²		C1 C1 A1	[3]
		(ii)	F =	<i>ma</i> 150 × 10 ³ × 13.4		C1	
				2.0N		A1	[2]
	(c)			ys 'below' given line and never zero at 4.6 Hz (or slightly less) and flatter		M1 A1	[2]
4	(a)	cha	arge /	potential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	V =	Q / 4π <i>ε</i> ₀ <i>r</i>		B1	[1]
		(ii)	C = so C	$Q / V = 4\pi \varepsilon_0 r$ and $4\pi \varepsilon_0$ is constant $C \propto r$		M1 A0	[1]
	(c)	(i)	r = ($C / 4\pi\epsilon_0 r$ 6.8 × 10 ¹²) / (4 π × 8.85 × 10 ¹²) 1 × 10 ² m		C1 C1 A1	[3]
		(ii)		$CV = 6.8 \times 10^{-12} \times 220$ = 1.5 × 10 ⁻⁹ C		A1	[1]
	(d)	(i)	V = = 83	$Q/C = (1.5 \times 10^{9}) / (18 \times 10^{12})$		A1	[1]
		(ii)	eithe	er energy = $\frac{1}{2}CV^2$ $\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$	2	C1 C1	
			or	= $1.65 \times 10^{7} - 6.2 \times 10^{8}$ = 1.03×10^{7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{9} \times 83$ = 1.03×10^{7} J		A1 (C1) (C1) (A1)	[3]

	Ра	ge 4		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	41	
5	(a)	field i	into	(the plane of) the paper		B1	[1]
	(b)	тv ² / В =	' r = = (20	e to magnetic field <u>provides</u> the centripetal force Bqv $0 \times 1.66 \times 10^{27} \times 1.40 \times 10^{5}) / (1.6 \times 10^{19} \times 6.4 \times 10^{12})$ 454 T	²)	B1 C1 B1 A0	[3]
	(c)	(i) <u>s</u>	sem	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii) r	new	flux density = $\frac{22}{20} \times 0.454$		C1	
				$B = 0.499 \mathrm{T}$		A1	[2]
6	(a)	(i) €	ə.g.	prevent flux losses / improve flux linkage		B1	[1]
		e	e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]
	(b)			value of the direct current producing same (mean) pov resistor	ver / heating	M1 A1	[2]
		• • •		er in primary = power in secondary $P_{S} = V_{S} I_{S}$		M1 A1	[2]
7	(a)	(i) e	e.g.	electron / particle diffraction		B1	[1]
		(ii) e	e.g.	photoelectric effect		B1	[1]
	(b)	(i) 6	6			A1	[1]
		. /	<i>λ</i> = <i>Ι</i>	nge in energy = 4.57 × 10 ⁻¹⁹ J hc / E $63 \times 10^{-34} \times 3.0 \times 10^8$) / (4.57 × 10 ⁻¹⁹)		C1	
		=	= 4.4	1×10^{-7} m		A1	[2]
8	(a)	•	-	of a heavy nucleus (<i>not atom/nuclide</i>) (lighter) nuclei of <u>approximately same mass</u>		M1 A1	[2]
	(b)	¹ ₀ n ⁴ ₂ He ⁷ ₃ Li		(allow $\frac{4}{2}\alpha$)		M2 A1	[3]
	(c)			particles have kinetic energy particles in the control rods is short / particles stopped	in rode /	B1	
		lose l	kine	tic energy in rods nergy of particles converted to thermal energy		B1 B1	[3]

	age 5)	Mark Scheme: Teachers' version	Syllabus	Paper	r
GCE AS/A LEVEL – October/November 2010 9702					41	
			Section B			
(a)	(i)	non-i	nverting (amplifier)		B1	
	(ii)	(G =)	$1 + R_2 / R_1$		B1	
(b)	(i)	-	= 1 + 100 / 820 ut = 17 mV		C1 A1	I
	(ii)	(<i>R</i> ₂ / (1 +)	R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b R_1 / R_2) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii), (b)(i) and (b)(ii))	mark in (b)(ii)	A1	I
) (a)	(i)	dens	ity × <u>speed of wave</u> (in the medium)		B1	
	(ii)	ρ = =	(7.0 × 10 ⁶) / 4100 1700 kg m ³		A1	
(b)	(i)	$I = I_1$	$_{\rm T}$ + $I_{\rm R}$		B1	
	(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	
		2. α ;	≈ 1		A1	
(c)	eith or	(\ r \	very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body	,	M1 M1 (M1) (M1) (A1)	
(a)	(i)	unwa	anted random power / signal / energy		B1	
	(ii)	loss	of (signal) power / energy		B1	
(b)	(i)	eithe	r signal-to-noise ratio at mic. = $10 \lg (P_2 / P_1)$ = $10 \lg (\{2.9 \times 10^6\} / \{$ = $29 dB$	3.4 × 10 ⁹ })	C1 A1	
			maximum length = $(29 - 24) / 12$ = 0.42 km = 420 m		C1 A1	
		or	signal-to-noise ratio at receiver = 10 lg (P_2 / P_1) at receiver, 24 = 10 lg $(P / \{3.4 \times 10^{9}\})$		(C1)	
			$P = 8.54 \times 10^{-7} \text{ W}$ power loss in cables = 10 lg({2.9 × 10 ⁻⁶ } / {8.54 × 1 = 5.3 dB	0 7})	(A1) (C1)	
			length = 5.3 / 12 km = 440 m		(A1)	

Pa	ge 6	Ма	ark Scheme: Teachers' version	Syllabus	Paper	•
	G	CE AS	/A LEVEL – October/November 2010	9702	41	
	•	o the m	nicrophone iers scores no mark)		M1 A1	[2
2 (a)	satellite receives signal amplifie at a different (different freque e.g. of freque	ves gre ed and carrier iencies ncies u	nitted from Earth to satellite atly attenuated signal transmitted <u>back to Earth</u>) frequency prevent swamping of uplink signal sed (6/4 GHz, 14/11 GHz, 30/20 GHz) any two other for additional physics)	(1) (1) (1) (1)	B1 B1 B2	[4]
(b)	advantage:	e.g.	in several orbits / with network		M1 A1 (M1) (A1)	
	disadvantage	: e.g.	<i>either</i> must be tracked <i>or</i> limited use in any one orbit more satellites required for continuous of	operation	M1 A1	[4]

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/42 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

	Page 2	2		rk Scheme: Tea			labus	Paper	-
			GCE AS	A LEVEL – Octo	ber/November 2	2010 9	702	42	
				S	Section A				
1	(a) for	ce per	unit mass	(ratio idea e	essential)			B1	[1]
	(b) gra	•	correct curva from (<i>R</i> ,1.0 ູ	ature g _s) & at least one	other correct poi	nt		M1 A1	[2]
	(c) (i)			nd Moon are in op field found by sub	•	ald strength		M1	
		<i>or</i> so tł	any other	sensible comme nt where it is zero	nt			A1 A0	[2]
	(ii)	(6.0	/ x ² = GM _M / × 10 ²⁴) / (7.4 54 R _E	$(D-x)^2$ 4 × 10 ²²) = x ² / (60	$(R_{\rm E}-x)^2$			C1 C1 A1	[3]
	(iii)	grap	g_{E} and g_{N}	east ⅔ distance to ₁ in opposite direo urvature (by eye)	ctions	ırface		B1 M1 A1	[3]
2	(a) (i)	no fo	orces (of attr	action or repulsio	n) between atom	s / molecules /	particles	B1	[1]
	(ii)		of kinetic ar to random m	nd potential energ	y of atoms / mole	ecules		M1 A1	[2]
	(iii)		dom) kinetic otential ener	energy increases	s with temperatur	e		M1	
				emperature increa	ases internal ene	rgy)		A1	[2]
	(b) (i)	zero						A1	[1]
	(ii)	work		\times $10^5 \times 6 \times$ 10 4				C1	
			= 240) J (ignore a	ny sign)			A1	[2]
	(iii)								
			change	work done / J	heating / J	increase in ir	nternal		

change	work done / J	heating / J	increase in internal energy / J
$\begin{array}{c} P \to Q \\ Q \to R \\ R \to P \end{array}$	+240	600	-360
	0	+720	+720
	-840	+480	-360

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

	Pa	ge 3	6	Mark Scheme: Teachers' version	Syllabus	Paper	•
				GCE AS/A LEVEL – October/November 2010	9702	42	
3	(a)	(i)	reso	nance		B1	[1]
		(ii)	amp	litude 16mm and frequency 4.6Hz		A1	[1]
	(b)	(i)	a =	$(-)\omega^2 x$ and $\omega = 2\pi f$ $4\pi^2 \times 4.6^2 \times 16 \times 10^3$ 13.4 ms ²		C1 C1 A1	[3]
		(ii)	F =	<i>ma</i> 150 × 10 ³ × 13.4		C1	
				2.0N		A1	[2]
	(c)			ys 'below' given line and never zero It 4.6 Hz (or slightly less) and flatter		M1 A1	[2]
4	(a)	cha	irge /	potential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	V = 0	Q / 4π <i>ε</i> ₀ <i>r</i>		B1	[1]
		(ii)	C = so C	$Q/V = 4\pi \varepsilon_0 r$ and $\frac{4\pi \varepsilon_0}{10}$ is constant $C \propto r$		M1 A0	[1]
	(c)	(i)	r = (6	$2 / 4\pi\epsilon_0 r$ 6.8 × 10 ¹²) / (4 π × 8.85 × 10 ¹²) 1 × 10 ² m		C1 C1 A1	[3]
		(ii)		$CV = 6.8 \times 10^{-12} \times 220$ = 1.5 × 10 ⁻⁹ C		A1	[1]
	(d)	(i)	V = 0 = 83	$Q/C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$ V		A1	[1]
		(ii)	eithe	er energy = $\frac{1}{2}CV^2$ $\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$	2	C1 C1	
			or	= $1.65 \times 10^{7} - 6.2 \times 10^{8}$ = 1.03×10^{7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{9} \times 83$ = 1.03×10^{7} J		A1 (C1) (C1) (A1)	[3]

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper 42	,
				GCE AS/A LEVEL – October/November 2010	November 2010 9702		
5	(a)	field	into	(the plane of) the paper		B1	[1]
	(b)	mv² / B :	/	e to magnetic field <u>provides</u> the centripetal force <i>Bqv</i> $0 \times 1.66 \times 10^{27} \times 1.40 \times 10^{5}) / (1.6 \times 10^{19} \times 6.4 \times 10^{27})$ 154 T	²)	B1 C1 B1 A0	[3]
	(c)	(i) <u>s</u>	sem	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii) 1	new	flux density = $\frac{22}{20} \times 0.454$		C1	
				B = 0.499 T		A1	[2]
6	(a)	(i) e	e.g.	prevent flux losses / improve flux linkage		B1	[1]
		(e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]
	(b)	• •		value of the direct current producing same (mean) pov resistor	ver / heating	M1 A1	[2]
				er in primary = power in secondary $P_{S} = V_{S} I_{S}$		M1 A1	[2]
7	(a)	(i) (e.g.	electron / particle diffraction		B1	[1]
		(ii) (e.g.	photoelectric effect		B1	[1]
	(b)	(i) (6			A1	[1]
			$\lambda = I$	nge in energy = 4.57 × 10 ⁻¹⁹ J hc / E $63 \times 10^{-34} \times 3.0 \times 10^8$) / (4.57 × 10 ⁻¹⁹)		C1	
				$4 \times 10^{-7} \text{ m}$		A1	[2]
8	(a)	•	-	of a heavy nucleus (<i>not atom/nuclide</i>) (lighter) nuclei of <u>approximately same mass</u>		M1 A1	[2]
	(b)			(allow $\frac{4}{2}\alpha$)		M2 A1	[3]
	(c)			particles have kinetic energy particles in the control rods is short / particles stopped	in rods /	B1	
		lose	kine	tic energy in rods nergy of particles converted to thermal energy		B1 B1	[3]

Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper	r
			GCE AS/A LEVEL – October/November 2010	9702	42	
			Section B			
(a)	(i)	non-	inverting (amplifier)		B1	I
	(ii)	(G =) 1 + R_2 / R_1		B1	[
(b)	(i)	-	= 1 + 100 / 820 ut = 17 mV		C1 A1	I
	(ii)	(1+	R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b R_1 / R_2) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii) , (b)(i) and (b)(ii))	mark in (b)(ii)	A1	[
) (a)	(i)	dens	sity × <u>speed of wave</u> (in the medium)		B1	I
	(ii)	ρ = =	(7.0 × 10 ⁶) / 4100 1700 kg m ³		A1	
(b)	(i)	I = I	$T + I_R$		B1	
	(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	
		2. α	≈ 1		A1	
(c)	eitt or		very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body		M1 M1 (M1) (M1) (A1)	
(a)	(i)	unwa	anted random power / signal / energy		B1	
	(ii)	loss	of (signal) power / energy		B1	
(b)	(i)	eithe	er signal-to-noise ratio at mic. = $10 \log (P_2 / P_1)$ = $10 \log (\{2.9 \times 10^{6}\} / \{$ = $29 dB$	3.4 × 10 ⁹ })	C1 A1	
			maximum length = (29 – 24) / 12 = 0.42 km = 420 m		C1 A1	
		or	signal-to-noise ratio at receiver = 10 lg (P_2 / P_1) at receiver, 24 = 10 lg($P / \{3.4 \times 10^9\}$)		(C1)	
			$P = 8.54 \times 10^{-7} \text{ W}$ power loss in cables = 10 lg({2.9 × 10^{-6}} / {8.54 × 1} = 5.3 dB	0 ⁷ })	(A1) (C1)	
			length = 5.3 / 12 km = 440 m		(A1)	

Pa	ige 6	Ма	ark Scheme: Teachers' version	Syllabus	Paper	•
	G	CE AS	/A LEVEL – October/November 2010	9702	42	
	•	the m	nicrophone iers scores no mark)		M1 A1	[2]
2 (a)	satellite receiv signal amplifie at a different (different frequ e.g. of frequer	ves gre ed and carrier encies ncies u	nitted from Earth to satellite atly attenuated signal transmitted <u>back to Earth</u>) frequency prevent swamping of uplink signal sed (6/4 GHz, 14/11 GHz, 30/20 GHz) any two other for additional physics)	 (1) (1) (1) (1) 	B1 B1 B2	[4]
(b)	advantage:	e.g. e.g.	because orbits are much lower whole Earth may be covered in several orbits / with network		M1 A1 (M1) (A1)	
	disadvantage:	e.g.	<i>either</i> must be tracked <i>or</i> limited use in any one orbit more satellites required for continuous o	peration	M1 A1	[4]

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

	Page 2		2	Mark Scheme: Teachers' version GCE A LEVEL – October/November 2010	Syllabus 9702	Paper 43	
<u> </u>				Section A	5102		
1	(a)	(i)		of change of angle / angular displacement pt out by radius		M1 A1	[2]
		(ii)	ω×	$T = 2\pi$		B1	[1]
	(b)	centripetal force is provided by the gravitational force either $mr(2\pi/T)^2 = GMm/r^2$ or $mr\omega^2 = GMm/r^2$ $r^3 \times 4\pi^2 = GM \times T^2$ $GM/4\pi^2$ is a constant (c) $T^2 = cr^3$					[4]
	(c)	(i)		er $T^2 = (45/1.08)^3 \times 0.615^2$ or $T^2 = 0.30 \times 45^3$ 165 years		C1 A1	[2]
		(ii)	spee	ed = $(2\pi \times 1.08 \times 10^8) / (0.615 \times 365 \times 24 \times 3600)$ = 35 km s ⁻¹		C1 A1	[2]
2	(a)	vol tim no ato	ume c e of c forces ms / r	nolecules / particles behave as elastic (identical) spher of atoms / molecules negligible compared to volume of ollision negligible to time between collisions s of attraction or repulsion between atoms / molecules nolecules / particles are in (continuous) random motior r, 1 each)	containing vessel	(1) (1) (1) (1) (1) B4	[4]
	(b)	b) $pV = \frac{1}{3}Nm < c^2 > \text{ and } pV = nRT \text{ or } pV = NkT$ $\frac{1}{3}Nm < c^2 > = nRT \text{ or } = NkT \text{ and } < E_K > = \frac{1}{2}m < c^2 >$ $n = N/N_A \text{ or } k = R/N_A$ $< E_K > = \frac{3}{2} \times R/N_A \times T$					
	(c)	(i)		tion represents <i>either</i> build-up of nucleus from light <i>or</i> build-up of heavy nucleus fror usion reaction		M1 A1	[2]
		(ii)	1.2 × T = {	on and deuterium nucleus will have equal kinetic energ $\times 10^{-14} = \frac{3}{2} \times 8.31 / (6.02 \times 10^{23}) \times T$ $5.8 \times 10^8 \text{ K}$ of $E = 2.4 \times 10^{-14}$ giving 1.16 × 10 ⁹ K scores 1 mark)	ies	B1 C1 A1	[3]
		(iii)	eithe or	er inter-molecular / atomic / nuclear forces exist proton and deuterium nucleus are positively charge	d / repel	B1	[1]

	Page 3	3	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE A LEVEL – October/November 2010	9702	43	
3	(a) (i)	8.0 0	cm		A1	[1]
	(ii)	2πf f = 3	= 220 5 (condone unit)		C1 A1	[2]
	(iii)	line	drawn mid-way between AB and CD (allow ±2 r	mm)	B1	[1]
	(iv)	v = .	<i>ω</i> a 220 × 4.0		C1	
			880 cm s ⁻¹		A1	[2]
	(b) (i)		line drawn 3 cm above AB (allow ±2 mm) arrow pointing upwards		B1 B1	[1] [1]
	(ii)		line drawn 3 cm above AB (allow ±2 mm) arrow pointing downwards		B1 B1	[1] [1]
	(iii)	=	$\omega \sqrt{a^2 - x^2}$ 220 × $\sqrt{4.0^2 - 2.0^2}$ 760 cm s ⁻¹ prrect value for x, 0/2 marks)		C1 A1	[2]
4	(a) (i)		c done moving unit positive charge i infinity <u>to the point</u>		M1 A1	[2]
	(ii)	char	rge / potential (difference) (ratio must be clear)		B1	[1]
	(b) (i)		acitance = (2.7 × 10 ⁶) / (150 × 10 ³) w any appropriate values)		C1	
		capa	acitance = 1.8×10^{-11} (allow 1.8 ±0.05)		A1	[2]
	(ii)	eithe	er energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and Q = CV	⁶ × 150 × 10 ³	C1	
		energy = $\frac{1}{2} \times 1.8 \times 10^{-11} \times (150 \times 10^3)^2$ or $\frac{1}{2} \times 2.7 \times 10^{-6} \times 150 \times 10^3$ = 0.20 J				
	or	fu	ince energy $\propto V^2$, capacitor has $(\frac{1}{2})^2$ of its energy left ull formula treatment ost = 0.15 J		C1 A1	[2]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE A LEVEL – October/November 2010	9702	43	
5	(a)	magnetio	c flux = BA = $89 \times 10^{3} \times 5.0 \times 10^{2} \times 2.4 \times 10^{2}$ = 1.07×10^{4} Wb		C1 A1	[2]
	(b)		f. = $\Delta \phi / \Delta t$ $\Delta \phi$ = 1.07 × 10 ⁴ Wb), Δt = 2.4 × 10 ² / 1.8 = 1.33 × f. = (1.07 × 10 ⁴) / (1.33 × 10 ²) = 8.0 × 10 ³ V	10 ² s	C1 C1 A1	[3]
		(ii) curr	ent = $8.0 \times 10^{-3} / 0.12$ $\approx 70 \text{ mA}$		M1 A0	[0]
	(c)	= 89 × 1 ≈ 3 × 10	wire = BIL $0^{3} \times 70 \times 10^{3} \times 5.0 \times 10^{2}$ 4 (N) comment e.g. this force is too / very small (to be felt)		C1 M1 A1	[3]
6	(a)	•	heating depends on <i>I</i> ² endent of current direction		M1 A1	[2]
	(b)	$I_0 = \sqrt{2} \times$	n power = 2 × average power		M1 M1 A1	[3]
7	(a)	force due Eq = Bq v = E/B	e to <i>E</i> -field is <u>equal and opposite</u> to force due to <i>B</i> -field v	I	B1 B1 B1	[3]
	(b)	or	charge and mass are not involved in the equation in (a $F_{\rm E}$ and $F_{\rm B}$ are both doubled <i>E</i> , <i>B</i> and <i>v</i> do not change eviation	a)	M1 A1	[2]
8	(a)		n frequency for electron to be emitted (from surface) omagnetic radiation / light / photons		M1 A1	[2]
	(b)	<i>either</i> th or ener	λ or $E = hf$ and $c = f\lambda$ meshold wavelength = $(6.63 \times 10^{-34} \times 3.0 \times 10^8) / (5.8 \times 10^{-10})$ = 340 nm rgy of 340 nm photon = 4.4×10^{-19} J peopled frequency = 8.7×10^{14} Hz	× 10 ¹⁹)	C1	
		<i>or</i> 450 appropria	eshold frequency = 8.7 × 10^{14} Hz) nm $\rightarrow 6.7 \times 10^{14}$ Hz ate comment comparing wavelengths / energies / frequ fect on photo-electric current	uencies	A1 B1 B1	[4]

Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE A LEVEL – October/November 2010	9702	43	
			Section B			
(a) (i)	edę	ges can be (clearly) distinguished		B1	[1]
	(ii)	e.g	 size of X-ray source / anode / target / aperture scattering of X-ray beam pixel size 			
		(an	y two, 1 each)		B2	
		furl	her detail e.g. use of lead grid		B1	[3]
(b			nage involves a <u>single</u> exposure		B1	
			n: exposure of a <u>slice</u> from many different angles ed for different slices		M1 A1	
			n involves a (much) <u>greater exposure</u>		B1	[4]
0 (a) e.		nite input impedance / resistance o output impedance / resistance			
			nite gain			
			nite bandwidth nite slew rate			
	(a	ny thi	ree, 1 each)		B3	[3
(b) (i)		h switch open, V is less (positive) than V^+		M1	
			put is positive h switch closed, V $$ is more (positive) than V * so output	is pogativo	A1 A1	L3
			low similar scheme if V more positive than V^+ treated f		AI	[3
	(ii)	1.	diodes connected correctly between output and earth		M1	
		2.	green identified correctly (<i>do not allow this mark if not argued in (i))</i>		A1	[2
1 (a) (i)	Ι/	$I_0 = \exp(-1.5 \times 2.9)$		C1	
			= 0.013		A1	[2
	(ii)	Ι/	$I_0 = \exp(-4.6 \times 0.95)$			
			= 0.013		A1	[1
(b) at	tenua	tion (coefficients) in muscle and in fat are similar		B1	
•	at	tenua	tion (coefficients) in bone and muscle / fat are different		B1	10
	CC	ntras	t depends on difference in attenuation		B1	[3

	Page	e 6	Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE A LEVEL – October/November 2010	9702	43	
12	(a) (signal has same variation (with time) as the data consists of (a series of) 'highs' and 'lows' <i>either</i> analogue is continuously variable (between lim 	ite)	B1 B1	
			or digital has no intermediate values	115)	B1	[3]
	(i		.g. can be regenerated / noise can be eliminated extra data can be added to check / correct transmitte any two reasonable suggestions, 1 each)	ed signal	B2	[2]
	(b) (nalogue signal is sampled at (regular time) intervals ampled signal is converted into a binary number		B1 B1	[2]
	(i	ii) c	ne channel is required for each bit (of the digital number)		B1	[1]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/51

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9702	51
Planning (15	marks)		
	problem (3 marks)		
	lependent variable and V is the dependent variable of	or vary <i>f</i> and mea	-
	current in coil X constant		[
	number of turns on coil (Y)/area of coil Y <u>constant</u> edit reference to coil X only.]
Do not ci			L
	ata collection (5 marks)		
	pendent coils labelled X and Y.		[
	g power supply/signal generator connected to coil X innected to voltmeter/c.r.o. in a workable circuit.	in a workable cire	cuit. [[
	to determine period/frequency or read off signal gen	erator.	[
	keep <u>current</u> constant in coil X: adjust signal genera		
Method of an	alysis (2 marks)		
	ph of V against f.		[
	nip valid if straight line <u>through origin</u>		ĺ
Safety consid	lerations (1 mark)		
	to hot coils – switch off when not in use/use gloves	do not touch co	oils. Must ref
to hot coi	•		[
Additional d	tail (4 marks)		
	ant points might include		[
			-
	arge current in coil X/large number of coils on coil Y	(to increase emf)).
	ron core (to increase emf). l on measuring emf e.g. height × <i>y</i> -gain.		
	other <u>alternating</u> magnetic fields.		
	I on measuring frequency from c.r.o. to determine pe	riod and hence f	
6. Use	of ammeter/c.r.o. and resistor to check current is con-		
	poulotod wiro for opilo		
	nsulated wire for coils. coil Y and coil X in the same relative positions.		

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9702	51

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer	Additional Guidance
(a)	A1	Gradient = <i>b</i> <i>y</i> -intercept = lg <i>a</i>	Allow log a but not ln a
(b)	T1 T2	1.97770.292 or 0.29231.92940.265 or 0.26481.87510.241 or 0.24051.81290.210 or 0.20951.74040.170 or 0.17031.65320.127 or 0.1271	T1 for lg <i>l</i> column – ignore rounding errors; min 2 dp. T2 for lg <i>T</i> column – must be values given A mixture is allowed
	U1	From \pm 0.004 or \pm 0.005 to \pm 0.006 or \pm 0.007	Allow more than one significant figure.
(c) (i)	G1	Six points plotted correctly	Must be within half a small square; penalise \geq half a small square. Penalise 'blobs' \geq half a small square. Ecf allowed from table.
	U2	Error bars in lg (<i>T</i> /s) plotted correctly.	All error bars must be plotted. Check first and last point. Must be accurate within half a small square; penalise \geq half a small square.
(ii)	G2	Line of best fit	If points are plotted correctly then lower end of line should pass between (1.65, 0.124) and (1.65, 0.128) and upper end of line should pass between (2.00, 0.300) and (2.00, 0.306). Allow ecf from points plotted incorrectly; five trend plots needed – examiner judgement.
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.	Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.
(iii)	C1	Gradient of best fit line	The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise ≥ half a small square.
	U3	Uncertainty in gradient	Method of determining absolute uncertainty Difference in worst gradient and gradient.
(iv)	C2	<i>y</i> -intercept	Must be negative. Check substitution of point from line into $c = y - mx$. Allow ecf from (c)(iii).

P	age 4	Mark Scheme: Teachers'	version	Syllabus	Paper
		GCE A/AS LEVEL – October/No	ovember 2010	9702	51
	U4	Uncertainty in <i>y</i> -intercept	Method of determining absolute uncertainty Difference in worst <i>y</i> -intercept and <i>y</i> -intercept. Do not allow ecf from false origin read-off (FOX). Allow ecf from (c)(iv) .		
(d)	C3	$a = 10^{y \text{ intercept}}$	<i>y</i> -intercept must be used. Expect an answer of about 0.19. If FOX expect answer of about 1.3.		
	C4	$b = \text{gradient } \frac{\text{and}}{\text{and}}$ in the range 0.495 to 0.520 and to 2 or 3 sf	Allow 0.50 to 0.52 to 2 sf Penalise 1 sf or ≥4 sf		
	U5	Absolute uncertainty in a and b	Difference in <i>a</i> and worst <i>a</i> . Uncertainty in <i>b</i> should be the same as the uncertainty in the gradient.		ame as the

Uncertainties in Question 2

(c) (iii) Gradient [U3]

- Uncertainty = gradient of line of best fit gradient of worst acceptable line 1.
- Uncertainty = 1/2 (steepest worst line gradient shallowest worst line gradient) 2.

(c) (iv) [U4]

- 1. Uncertainty = y-intercept of line of best fit y-intercept of worst acceptable line
- 2. Uncertainty = $\frac{1}{2}$ (y-intercept of steepest worst line – y-intercept of shallowest worst line)

(d) [U5] 1. Uncertainty = $10^{\text{best y intercept}} - 10^{\text{worst y intercept}}$

PMT

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/52

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9702	52
Planning (15	ō marks)		
	problem (3 marks)		
	ndependent variable and V is the dependent variable o	r vary <i>f</i> and mea	
	e <u>current</u> in coil X <u>constant</u>		[
	e number of turns on coil (Y)/area of coil Y <u>constant</u>		,
Do not c	redit reference to coil X only.		[
	data collection (5 marks)		
	ependent coils labelled X and Y.		., [
	ng power supply/signal generator connected to coil X i onnected to voltmeter/c.r.o. in a workable circuit.	n a workable circ	
	b. to determine period/frequency or read off signal gene	erator	[
	to keep <u>current</u> constant in coil X: adjust signal genera		
	······································		•
	nalysis (2 marks)		
	aph of V against f.		[
AZ Relations	ship valid if straight line <u>through origin</u>		[
Safety consi	iderations (1 mark)		
	ce to hot coils – switch off when not in use/use gloves	/do not touch co	
to hot co	ils.		[
Additional d	etail (4 marks)		
	evant points might include		[
4 11.5	lange summer is sail V/lange such as af sails as sail V/		
	large current in coil X/large number of coils on coil Y (iron core (to increase emf).	to increase emi)	
	ail on measuring emf e.g. height \times y-gain.		
	d other alternating magnetic fields.		
	ail on measuring frequency from c.r.o. to determine per	riod and hence f.	
	of ammeter/c.r.o. and resistor to check current is cons		
	insulated wire for coils.		
8. Kee	p coil Y and coil X in the same relative positions.		
Do not allow	vague computer methods.		

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9702	52

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer	Additional Guidance
(a)	A1	Gradient = <i>b</i> <i>y</i> -intercept = lg <i>a</i>	Allow log a but not ln a
(b)	T1 T2	1.97770.292 or 0.29231.92940.265 or 0.26481.87510.241 or 0.24051.81290.210 or 0.20951.74040.170 or 0.17031.65320.127 or 0.1271	T1 for lg <i>l</i> column – ignore rounding errors; min 2 dp. T2 for lg <i>T</i> column – must be values given A mixture is allowed
	U1	From $\pm \ 0.004 \ \text{or} \pm 0.005 \ \text{to} \pm 0.006 \ \text{or} \pm 0.007$	Allow more than one significant figure.
(c) (i)	G1	Six points plotted correctly	Must be within half a small square; penalise ≥ half a small square. Penalise 'blobs' ≥ half a small square. Ecf allowed from table.
	U2	Error bars in lg (<i>T</i> /s) plotted correctly.	All error bars must be plotted. Check first and last point. Must be accurate within half a small square; penalise \geq half a small square.
(ii)	G2	Line of best fit	If points are plotted correctly then lower end of line should pass between (1.65, 0.124) and (1.65, 0.128) and upper end of line should pass between (2.00, 0.300) and (2.00, 0.306). Allow ecf from points plotted incorrectly; five trend plots needed – examiner judgement.
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.	Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.
(iii)	C1	Gradient of best fit line	The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise \geq half a small square.
	U3	Uncertainty in gradient	Method of determining absolute uncertainty Difference in worst gradient and gradient.
(iv)	C2	<i>y</i> -intercept	Must be negative. Check substitution of point from line into $c = y - mx$. Allow ecf from (c)(iii).

P	age 4	Mark Scheme: Teachers'	version	Syllabus	Paper
		GCE A/AS LEVEL – October/No	ovember 2010	9702	52
	U4	Uncertainty in <i>y</i> -intercept	Method of determining absolute uncertainty Difference in worst <i>y</i> -intercept and <i>y</i> -intercept. Do not allow ecf from false origin read-off (FOX). Allow ecf from (c)(iv) .		
(d)	C3	$a = 10^{y \text{ intercept}}$	<i>y</i> -intercept must be used. Expect an answer of about 0.19. If FOX expect answer of about 1.3.		
	C4	b = gradient <u>and</u> in the range 0.495 to 0.520 <u>and</u> to 2 or 3 sf	Allow 0.50 to 0.52 to 2 sf Penalise 1 sf or ≥4 sf		
	U5	Absolute uncertainty in a and b	Difference in <i>a</i> a Uncertainty in <i>b</i> uncertainty in th	should be the sa	ame as the

Uncertainties in Question 2

(c) (iii) Gradient [U3]

- Uncertainty = gradient of line of best fit gradient of worst acceptable line 1.
- Uncertainty = 1/2 (steepest worst line gradient shallowest worst line gradient) 2.

(c) (iv) [U4]

- 1. Uncertainty = y-intercept of line of best fit y-intercept of worst acceptable line
- 2. Uncertainty = $\frac{1}{2}$ (y-intercept of steepest worst line – y-intercept of shallowest worst line)

(d) [U5] 1. Uncertainty = $10^{\text{best y intercept}} - 10^{\text{worst y intercept}}$

PMT

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/53

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pag	ge 2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A/AS LEVEL – October/November 2010	9702	53
Plar	nning (1	5 marks)		
		problem (3 marks) A is the independent variable and <i>R</i> is the dependent	variable or vary	c, d or A a
P2	measure If <i>c</i> varie	e R. ed then (<i>t</i> and) <i>d</i> or <i>A</i> kept constant, if <i>d</i> varied then (<i>t</i>		 t constant, if
		nen <i>c</i> or <i>d</i> kept constant. mperature <u>constant</u> .		
		data collection (5 marks) iagram to measure resistance.		1
M2	Use mic	rometer screw gauge to measure d or t . (Allow digital o $e c$ with a ruler/metre rule.	r vernier calliper	s) [
M4	Method or <i>d</i> or <i>t</i>	of making contact with the strip e.g. use electrodes of or conducting paint methods. Do not allow crocodile rea of the end of the strip is covered.		imension as
		to determine resistance.		
	Plot a gr	nalysis (2 marks) aph of <i>R</i> against <i>c</i> , 1/ <i>d</i> or 1/A depending on orientation	n. Other alterna	tives possibl
A2	Must be	gainst 1/c depending on orientation consistent with A1: $\rho = A \times \text{gradient}$ or $t \times \text{gradient}/c$ ternatives possible, e.g. $\rho = d \times \text{gradient}/t$		
	-	iderations (1 mark)		
S1	Referen	ce sharp edges or cutting metals, e.g. wear gloves.		[
		letail (4 marks) levant points might include		I
01/2		Ilate aluminium strip		l
		e many readings of <i>t</i> or <i>d</i> and average		
	3. Use	a protective resistor/circuit designed to reduce current		
		rrange equation to determine graph using c , d and t or	A	
		ermine typical resistance of aluminium strip		
		ly meter range of ammeter/voltmeter/ohmmeter		
		ail on cutting strip e.g. mark using set square		
Do r	not allow	vague computer methods.		
				[Total: 1

PMT

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9702	53

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer	Additional Guidance
(a)	A1	$\frac{t}{C}$	Must be negative. Allow $\frac{15}{C}$.
(b)	T1 T2	1501.28 or 1.2811001.61 or 1.60966.71.86 or 1.85650.01.97 or 1.97433.32.08 or 2.079	T1 for 1/ <i>R</i> column – ignore sf and rounding errors T2 for ln (<i>V</i> /V) column – must be values given A mixture is allowed
	U1	From \pm 0.05 or \pm 0.06 to \pm 0.02 or \pm 0.03	Allow more than one significant figure.
(c) (i)	G1	Five points plotted correctly	Must be within half a small square; penalise \geq half a small square. Ecf allowed from table. Penalise 'blobs' \geq half a small square.
	U2	Error bars in In(<i>V</i> /V) plotted correctly.	All plots to have error bars; penalise \geq half a small square. Check first and last point. Must be accurate within half a small square.
(ii)	G2	Line of best fit	If points are plotted correctly then upper end of line should pass between (20, 2.16) and (20, 2.18) and lower end of line should pass between (160, 1.20) and (160, 1.225). Allow ecf from points plotted incorrectly – examiner judgement.
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.	Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.
(iii)	C1	Gradient of best fit line Must be negative	The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise \geq half a small square. Do not penalise POT.
	U3	Uncertainty in gradient	Method of determining absolute uncertainty. Difference in worst gradient and gradient.
(d) (i)	C2	C = -15/gradient	Gradient must be used. Allow ecf from (c)(iii) . Do not penalise POT.
	C3	2.14 × 10 ³ F to 2.24 × 10 ³ F and to 2 or 3 sf	Must be in range – penalise POT. Allow equivalent unit including s Ω 1 , C V 1, A s V 1

Page 4		Mark Scheme: Teacher	s' version	Syllabus	Paper
		GCE A/AS LEVEL – October/	GCE A/AS LEVEL – October/November 2010		53
(ii)	U4	Determines % uncertainty in C	Uses worst gradient or worst calculated value. Do not check calculation.		culated C
(e)	C4	Determines <i>R</i> correctly	Expect to see an answer about 3000 Ω . R = 6.514/candidate's C; allow ecf from (d)(i)		
	U5	Determines absolute uncertainty	Determines worst value of R or (d)(ii) × R		d)(ii) × <i>R</i>

Uncertainties in Question 2

- (c) (iii) Gradient [U3]
 - 1. Uncertainty = gradient of line of best fit gradient of worst acceptable line
 - 2. Uncertainty = $\frac{1}{2}$ (steepest worst line gradient shallowest worst line gradient)
- (d) (ii) [U4]
 - 1. Works out worst *C* then determines % uncertainty
 - 2. Works out percentage uncertainty in gradient

(e) [U5]

1. Works out worst *R* then determines difference

2.
$$\Delta R = \left(\frac{\Delta \text{gradient}}{\text{gradient}}\right) R = \left(\frac{\Delta C}{C}\right) R$$